自动紧急制动(Autonomous Emergency Braking,AEB)是一种主动安全技术.为了解决安全距离算法或碰撞时间算法(Time-to-Collision,TTC)不能同时保障安全性和舒适性的问题,提出一种基于融合算法的控制策略,该策略综合利用安全距离算法和TT...自动紧急制动(Autonomous Emergency Braking,AEB)是一种主动安全技术.为了解决安全距离算法或碰撞时间算法(Time-to-Collision,TTC)不能同时保障安全性和舒适性的问题,提出一种基于融合算法的控制策略,该策略综合利用安全距离算法和TTC算法,在安全距离算法中针对道路附着系数变化进行了优化,以两车最小相对距离为优化目标提高安全性,以预警时长为优化目标提高舒适性.建立了基于Carsim和Simulink仿真平台,对该策略进行了仿真分析.结果表明:在中国新车评价规程(China New Car Assessment Program,C-NCAP)中,该策略可以在不同工况下实现避撞功能并提升舒适性.展开更多
为进一步提高汽车自动紧急制动系统对行人的安全保护功能,设计一种上层采用模糊控制方法和下层采用PID控制方法的联合分层控制行人避障策略。基于某款E级SUV车辆,建立相应的动力学模型,在实际行人测试环境下,建立基于碰撞时间算法的风...为进一步提高汽车自动紧急制动系统对行人的安全保护功能,设计一种上层采用模糊控制方法和下层采用PID控制方法的联合分层控制行人避障策略。基于某款E级SUV车辆,建立相应的动力学模型,在实际行人测试环境下,建立基于碰撞时间算法的风险评价模型,为了验证所提出控制策略的有效性,通过Simulink和Carsim联合仿真进行测试验证。仿真测试结果表明,所提出的行人避障控制策略达到C-NCAP行人测试工况标准,与行人最小安全距离为0.9 m。在保证安全的前提下,模糊控制方法可调整制动强度,减速度控制在4.8~6.1 m/s 2,能够使车辆具有较好的舒适性。展开更多
文摘自动紧急制动(Autonomous Emergency Braking,AEB)是一种主动安全技术.为了解决安全距离算法或碰撞时间算法(Time-to-Collision,TTC)不能同时保障安全性和舒适性的问题,提出一种基于融合算法的控制策略,该策略综合利用安全距离算法和TTC算法,在安全距离算法中针对道路附着系数变化进行了优化,以两车最小相对距离为优化目标提高安全性,以预警时长为优化目标提高舒适性.建立了基于Carsim和Simulink仿真平台,对该策略进行了仿真分析.结果表明:在中国新车评价规程(China New Car Assessment Program,C-NCAP)中,该策略可以在不同工况下实现避撞功能并提升舒适性.
文摘为进一步提高汽车自动紧急制动系统对行人的安全保护功能,设计一种上层采用模糊控制方法和下层采用PID控制方法的联合分层控制行人避障策略。基于某款E级SUV车辆,建立相应的动力学模型,在实际行人测试环境下,建立基于碰撞时间算法的风险评价模型,为了验证所提出控制策略的有效性,通过Simulink和Carsim联合仿真进行测试验证。仿真测试结果表明,所提出的行人避障控制策略达到C-NCAP行人测试工况标准,与行人最小安全距离为0.9 m。在保证安全的前提下,模糊控制方法可调整制动强度,减速度控制在4.8~6.1 m/s 2,能够使车辆具有较好的舒适性。