It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients;2) prediction intervals that are excessively wid...It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients;2) prediction intervals that are excessively wide. This paper set out to study the performances of classical VAR and Sims-Zha Bayesian VAR models in the presence of autocorrelated errors. Autocorrelation levels of (-0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99) were considered for short term (T = 8, 16);medium term (T = 32, 64) and long term (T = 128, 256). The results from 10,000 simulation revealed that BVAR model with loose prior is suitable for negative autocorrelations and BVAR model with tight prior is suitable for positive autocorrelations in the short term. While for medium term, the BVAR model with loose prior is suitable for the autocorrelation levels considered except in few cases. Lastly, for long term, the classical VAR is suitable for all the autocorrelation levels considered except in some cases where the BVAR models are preferred. This work therefore concludes that the performance of the classical VAR and Sims-Zha Bayesian VAR varies in terms of the autocorrelation levels and the time series lengths.展开更多
The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 loc...The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 locations on the Nile Delta drainage system, are stored in a National Database operated by the Drainage Research Institute (DRI). Correlation patterns may be found between water quantity and water quality parameters at the same location, or among water quality parameters within a monitoring location or among locations. Serial correlation is also detected in water quality variables. Through the investigation of the level of information redundancy, assessment and redesign of water quality monitoring network aim to improve the overall network efficiency and cost effectiveness. In this study, the potential of the Artificial Neural Network (ANN) on simulating interrelation between water quality parameters is examined. Several ANN inputs, structures and training possibilities are assessed and the best ANN model and modeling procedure is selected. The prediction capabilities of the ANN are compared with the linear regression models with autocorrelated residuals, usually used for this purpose. It is concluded that the ANN models are more accurate than the linear regression models having the same inputs and output.展开更多
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not...The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49).展开更多
文摘It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients;2) prediction intervals that are excessively wide. This paper set out to study the performances of classical VAR and Sims-Zha Bayesian VAR models in the presence of autocorrelated errors. Autocorrelation levels of (-0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99) were considered for short term (T = 8, 16);medium term (T = 32, 64) and long term (T = 128, 256). The results from 10,000 simulation revealed that BVAR model with loose prior is suitable for negative autocorrelations and BVAR model with tight prior is suitable for positive autocorrelations in the short term. While for medium term, the BVAR model with loose prior is suitable for the autocorrelation levels considered except in few cases. Lastly, for long term, the classical VAR is suitable for all the autocorrelation levels considered except in some cases where the BVAR models are preferred. This work therefore concludes that the performance of the classical VAR and Sims-Zha Bayesian VAR varies in terms of the autocorrelation levels and the time series lengths.
文摘The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 locations on the Nile Delta drainage system, are stored in a National Database operated by the Drainage Research Institute (DRI). Correlation patterns may be found between water quantity and water quality parameters at the same location, or among water quality parameters within a monitoring location or among locations. Serial correlation is also detected in water quality variables. Through the investigation of the level of information redundancy, assessment and redesign of water quality monitoring network aim to improve the overall network efficiency and cost effectiveness. In this study, the potential of the Artificial Neural Network (ANN) on simulating interrelation between water quality parameters is examined. Several ANN inputs, structures and training possibilities are assessed and the best ANN model and modeling procedure is selected. The prediction capabilities of the ANN are compared with the linear regression models with autocorrelated residuals, usually used for this purpose. It is concluded that the ANN models are more accurate than the linear regression models having the same inputs and output.
文摘The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49).