期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Simulation Study on the Performances of Classical Var and Sims-Zha Bayesian Var Models in the Presence of Autocorrelated Errors
1
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Modelling and Simulation》 2015年第4期146-158,共13页
It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients;2) prediction intervals that are excessively wid... It is well known that a high degree of positive dependency among the errors generally leads to 1) serious underestimation of standard errors for regression coefficients;2) prediction intervals that are excessively wide. This paper set out to study the performances of classical VAR and Sims-Zha Bayesian VAR models in the presence of autocorrelated errors. Autocorrelation levels of (-0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99) were considered for short term (T = 8, 16);medium term (T = 32, 64) and long term (T = 128, 256). The results from 10,000 simulation revealed that BVAR model with loose prior is suitable for negative autocorrelations and BVAR model with tight prior is suitable for positive autocorrelations in the short term. While for medium term, the BVAR model with loose prior is suitable for the autocorrelation levels considered except in few cases. Lastly, for long term, the classical VAR is suitable for all the autocorrelation levels considered except in some cases where the BVAR models are preferred. This work therefore concludes that the performance of the classical VAR and Sims-Zha Bayesian VAR varies in terms of the autocorrelation levels and the time series lengths. 展开更多
关键词 Simulation PERFORMANCES Vector Autoregression (VAR) CLASSICAL VAR Sims-Zha Prior BAYESIAN VAR (BVAR) autocorrelated errors
下载PDF
基于误差截尾假设的时序预测可学习性理论与算法
2
作者 张绍群 张钊钰 +1 位作者 姜远 周志华 《计算机学报》 EI CAS CSCD 北大核心 2022年第11期2279-2289,共11页
在收集和处理时间序列数据的过程中,难免会产生误差,而在很多现实情形中误差是自相关非独立的.已有的预测理论在分析误差自相关的时序数据时,往往需要知道预测算法所输出假设空间的显式表达,而对于一些假设空间不明确的模型,比如神经网... 在收集和处理时间序列数据的过程中,难免会产生误差,而在很多现实情形中误差是自相关非独立的.已有的预测理论在分析误差自相关的时序数据时,往往需要知道预测算法所输出假设空间的显式表达,而对于一些假设空间不明确的模型,比如神经网络,尚未有系统的求解方法和理论保障来分析其在非平稳且误差自相关时序数据上的预测能力.本文基于误差截尾的假设,提出了时间序列的预测PAC可学习理论,并给出了数据依赖情形下的泛化误差界.该界限包含一个时序复杂度度量和一个差异度量,前者描述了序列数据的非平稳性,后者可在适当情形下从数据中估计得到.因此,该误差界并不依赖于假设空间的显式表达,具有较强的普适性.根据上述理论,本文提出了一种基于自回归模型的交替优化算法用于预测非平稳的时间序列数据.我们在真实数据集上进行实验,验证了本文提出算法的有效性. 展开更多
关键词 机器学习 时间序列分析 自相关误差 预测PAC可学习性 差异估计 交替优化
下载PDF
Application of Artificial Neural Networks for the Prediction of Water Quality Variables in the Nile Delta 被引量:4
3
作者 Bahaa Mohamed Khalil Ayman Georges Awadallah +1 位作者 Hussein Karaman Ashraf El-Sayed 《Journal of Water Resource and Protection》 2012年第6期388-394,共7页
The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 loc... The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 locations on the Nile Delta drainage system, are stored in a National Database operated by the Drainage Research Institute (DRI). Correlation patterns may be found between water quantity and water quality parameters at the same location, or among water quality parameters within a monitoring location or among locations. Serial correlation is also detected in water quality variables. Through the investigation of the level of information redundancy, assessment and redesign of water quality monitoring network aim to improve the overall network efficiency and cost effectiveness. In this study, the potential of the Artificial Neural Network (ANN) on simulating interrelation between water quality parameters is examined. Several ANN inputs, structures and training possibilities are assessed and the best ANN model and modeling procedure is selected. The prediction capabilities of the ANN are compared with the linear regression models with autocorrelated residuals, usually used for this purpose. It is concluded that the ANN models are more accurate than the linear regression models having the same inputs and output. 展开更多
关键词 Artificial Neural Networks Regression with autocorrelated errors Water Quality PREDICTION NILE Delta
下载PDF
神经网络经济预测法研究 被引量:10
4
作者 张晓红 《预测》 CSSCI 2001年第6期61-62,60,共3页
本文在多层 BP神经网络的基础上 ,结合经济类时间序列的特点 ,采用特殊的处理方法 ,建立通用的经济预测神经网络模型 ,并利用此模型对安徽省某一经济数据加以预测。特殊的处理方法包括前置处理、单维时间序列扩展输入节点设计、训练区... 本文在多层 BP神经网络的基础上 ,结合经济类时间序列的特点 ,采用特殊的处理方法 ,建立通用的经济预测神经网络模型 ,并利用此模型对安徽省某一经济数据加以预测。特殊的处理方法包括前置处理、单维时间序列扩展输入节点设计、训练区数据与试验区数据划分、误差自相关神经元节点的引入 ,以及后置评价处理。实际的预测结果表明了该方法的先进性和可行性。 展开更多
关键词 经济预测 时间序列 误差自相关 BP神经网络
下载PDF
Estimators of Linear Regression Model and Prediction under Some Assumptions Violation
5
作者 Kayode Ayinde Emmanuel O. Apata Oluwayemisi O. Alaba 《Open Journal of Statistics》 2012年第5期534-546,共13页
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not... The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49). 展开更多
关键词 PREDICTION ESTIMATORS Linear Regression Model autocorrelated error TERMS CORRELATED Stochastic NORMAL Regressors
下载PDF
中国建设用地与区域社会经济发展关系的空间计量研究 被引量:37
6
作者 叶浩 张鹏 濮励杰 《地理科学》 CSCD 北大核心 2012年第2期149-155,共7页
利用空间计量模型,对中国大陆地区的30个省、市、自治区2008年的建设用地面积与社会经济发展之间的关系进行了研究。研究表明:30个省、直辖市和自治区地区建设用地面积、GDP、总人口和城市化率都有显著的空间相关特征,一个区域社会经济... 利用空间计量模型,对中国大陆地区的30个省、市、自治区2008年的建设用地面积与社会经济发展之间的关系进行了研究。研究表明:30个省、直辖市和自治区地区建设用地面积、GDP、总人口和城市化率都有显著的空间相关特征,一个区域社会经济的发展不仅会驱动自身区域建设用地的扩张,而且会带动邻近区域的建设用地的增长。传统上只从时间维度出发的研究思路,忽视空间维度的相关性和异质性,低估了区域社会经济发展对建设用地增长的作用,必须在普通面板线性回归模型中描述的基础上引入空间变量进行修正。计量模型检验表明,城市化水平对建设用地总规模的影响不甚显著。说明中国大部分省份的农村居民点用地的利用效率普遍偏低。因此,农村居民点用地的调整与优化已迫在眉睫,从长远看来,提高城市化水平,打破城乡二元化的土地制度,建立统一的土地市场,是缓解土地资源紧缺、提高土地利用效率的有效途径。 展开更多
关键词 建设用地 社会经济发展 城市化 空间自相关 空间误差模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部