Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) ...Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.展开更多
The ion levels in the epidermal bulliform cells of epidermis, mesophyll cells and cells of the vascular bundle sheath of four ecotypes of reed (Phragmites australis (Cav.) Trin. ex Steud.) were determined by means of ...The ion levels in the epidermal bulliform cells of epidermis, mesophyll cells and cells of the vascular bundle sheath of four ecotypes of reed (Phragmites australis (Cav.) Trin. ex Steud.) were determined by means of X_ray microanalysis. The results indicated that higher K +, Na +, Ca 2+ , Mg 2+ and Cl - were distributed in the vascular bundle sheath cells than in mesophyll cells and epidermal bulliform cells of the swamp ecotype. Higher Ca 2+ was found in the bulliform cells than in mesophyll cells and vascular bundle sheath cells, higher Mg 2+ in the mesophyll cells and higher K +, Na + and Cl - in the vascular bundle sheath cells of the dune ecotype. Higher Na + and Mg 2+ was determined in the mesophyll cells than in the bulliform cells and vascular bundle sheath cells, and higher K +, Ca 2+ and Cl - in the vascular bundle sheath cells of the light salt meadow ecotype. In the heavy salt meadow ecotype, higher Na + and Mg 2+ were accumulated in the bulliform cells than in mesophyll cells and vascular bundle sheath cells, but higher K +, Ca 2+ and Cl - in the mesophyll cells. Furthermore, the distributional conditions of the above five ions in leaf cells of the four ecotypes and their significance in the physiological adaptation of reed to habitat were discussed in detail.展开更多
Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nit...Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.展开更多
Two plant populations of Phragmites australis and Typha orientalis grown in gravel and sediment substrate were studied to assess their capabilities for purifying polluted water in Taihu Lake, China. The substrate disp...Two plant populations of Phragmites australis and Typha orientalis grown in gravel and sediment substrate were studied to assess their capabilities for purifying polluted water in Taihu Lake, China. The substrate displayed most significant effects on the suspended matter (P 〈 0.01), with the reduction of 76%-87% and 52%--63% for P. australis, and 83%-86% and 45%-62% for T. orientalis in gravel substrate and sediment substrate, respectively. Both species and substrates significantly decreased the N and P concentrations of water body (P 〈 0.01). P. australis showed higher total N and P concentrations in tissues than T. orientalis and had a greater potential to remove nutrients from the lake. Phosphate was easily to concentrate in the belowground tissues, while nitrate concentration was higher in leaf and stalk. Therefore, harvesting the aboveground tissues could take most of nitrate out of the sediment. The saturate photosynthetic rate (Asat) of P. australis was higher than that of T. orientalis when grown in sediment substrate. But instance water-use- efficiency (WUEi) (A/E) and intrinsic water use efficiency (A/gs) showed the maximum values of two species grown in river water. With significant difference in gs, however, intercellular CO2 concentration (Ci) had no obvious difference in two species which indicated that high Asat value of P. australis might result from the increased carboxylation capacity of the mesophyll, because of the central role of N in photosynthetic enzymes. Our findings suggest that the plants could absorb most of nitrogen in polluted water, while gravel displayed a high capacity for absorbing the suspended matters and phosphate salts. Therefore, biological and physiological pathways for pollutant removal should be integrated.展开更多
Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a...Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.展开更多
Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge...Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge-nization and habitat succession towards woodland.Managers prevent excessive litter build-up with various in-terventions opening-up the reedbeds,such as grazing,which may be detrimental or suitable for some reed bird species.We assessed the effects of extensive grazing by horses and its cessation in the medium and long terms on reedbed structure,and the consequences on reed-nesting songbird densities in Estagnol Nature Reserve,a pro-tected wetland near the French Mediterranean coast.We compared reedbed structural features between grazed,newly ungrazed and old-ungrazed plots.During nine years,we censused four songbird species in spring and collected water level data in the same survey plots.Grazing reduced reedbed extent,rejuvenated the vegetation with more short green stems on a thinner litter,and produced higher structural heterogeneity and discontinuity compared to long-lasting non grazing.Newly ungrazed plot showed intermediate effects.All surveyed songbird total densities were similar among plots while species numbers and densities differed.Grazed reedbed was more attractive to Moustached Warblers(Acrocephalus melanopogon)and Great Reed Warblers(Acrocephalus arundi-naceus),likely due to the large edges and the high vegetation structural heterogeneity.However,Moustached Warblers were more negatively affected by higher water level in grazed reedbed,presumably because flooding prevents litter foraging.The newly ungrazed reedbed was not preferred by any species.All warbler species were found under low density in the old-ungrazed reedbed,where Reed Buntings(Emberiza schoeniclus)were exclu-sively found.Food availability related to thick litter layer may explain this predilection.Common Reed Warblers(Acrocephalus scirpaceus)were found everywhere in similar densities.We conclude that reedbed management b展开更多
Liberty State Park in New Jersey,USA,is a "brownfield" site containing various levels of contaminants.To investigate metal uptake and distributions in plants on the brownfield site,Phragmites australis and Typha lat...Liberty State Park in New Jersey,USA,is a "brownfield" site containing various levels of contaminants.To investigate metal uptake and distributions in plants on the brownfield site,Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season(May–September)in 2011 at two sites with the high and low metal loads,respectively.The objective of this study was to understand the metal(Fe,Mn,Cu,Pb and Zn)concentration and spatial distributions in P.australis and T.latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence(μXRF)and synchrotron X-ray computed microtomography(μCMT)techniques.The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis.Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different.Significant correlations were found between metals(Cu,Mn,Pb and Zn)and Fe in the epidermis,implying that metals were scavenged by Fe oxides.The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific.The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.展开更多
Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inla...Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC展开更多
Two dominant species of Willow( Salix triandra )and Reed (Phragmites australis) along the Schelde Estuary(in Belgium)were selected in this research. The pigments of higher plant was used as biomarkers, the deco...Two dominant species of Willow( Salix triandra )and Reed (Phragmites australis) along the Schelde Estuary(in Belgium)were selected in this research. The pigments of higher plant was used as biomarkers, the decomposition process of the two species were studied after they fall into the Schelde Estuary. After statistical analysis(Spearman rank order correlation, P <0 05), the results has shown the decomposition dynamics pattern of the pigments, and the willow showed different pattern in comparing with the reed, e.g. Chlorophyll a decomposition dynamics for willow is: y 1=12196 x 2 - 175895 x +1E+06+ k , R 2=0 5706 while for reed is: y 2=-37878 x 2+229782 x +734282+ k , R 2=0 9065 The precise time of the leaf litter spent in the water was also calculated as were less than 24 days, 24-37 days, longer than 37 days(willow)and less than 24 days, longer than 24 days(reed), the leaf litter fate of the two dominant species in the Schelde Estuary was also compared.展开更多
With the support of the UNEP/GEF Siberian Crane Wetland Project,a five-year field survey of breeding waterbirds was conducted in four nature reserves - Zhalong,Keerqin,Xianghai and Momoge National Nature Reserves in t...With the support of the UNEP/GEF Siberian Crane Wetland Project,a five-year field survey of breeding waterbirds was conducted in four nature reserves - Zhalong,Keerqin,Xianghai and Momoge National Nature Reserves in the Songnen Plain for the period from May 2004 to August 2008.The purpose of the survey was to improve our understanding of the distribution and populations of breeding waterbirds in this area.The Red-crowned Crane (Grus japonensis) was the most important target species.Our survey results confirm that the Zhalong wetland is the largest breeding ground for the Red-crowned cranes in the Songnen Plain.Over 90% of the breeding birds were found in Zhalong,with numbers fluctuating from 112 to 275 over the years.Reed (Phragmites australis) is the most important plant species associated with breeding locations of this bird species.Water supply to the wetland can relieve pressure from deterioration of wetland habitats for the breeding of Red-crowned cranes.However,a sound scientific basis for the water supply mechanism is the key to better management of their habitat and a prerequisite for ensuring the breeding success of the Red-crowned Crane.展开更多
Objective Using authentic raw herbal materials is fundamental to herbal medicine quality. Cuscuta chinensis and C. australis are two important species of Cuscutae Semen recorded in Chinese Pharmacopoeia. Due to having...Objective Using authentic raw herbal materials is fundamental to herbal medicine quality. Cuscuta chinensis and C. australis are two important species of Cuscutae Semen recorded in Chinese Pharmacopoeia. Due to having tiny bodies of seeds, it is extremely difficult to differentiate them from adulterants and closely related species by morphologic characteristics, leading to serious safety problems. Methods In this study, we developed a fast and efficient method to identify Cuscutae Semen on the market. First, a total of 207 ITS2 sequences representing 45 related species of Cuscutae Semen were collected to construct a standard DNA barcode database, then 33 commercial samples purchased from markets were analyzed by BLAST, and Neighbor-joining tree was used to verify the efficacy of the database. Results The percentage of counterfeits and adulterants in the 33 commercial samples were up to 69.7%, and only 10 commercial products were found to be genuine. The adulterated species included 11 species (Amaranthus hybridus, Brassica carinata, Brassica juncea var. megarrhiza, Chenopodium album, Corispermum heptapotamicum, Cuscuta alata, Cuscuta japonica, Cuscuta monogyna, Foeniculum vulgare, Glycine max, and Medicago sativa). Conclusion DNA barcoding is a fast and efficient method to identify Cuscutae Semen on the market.展开更多
In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sa...In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sampling sites of Quanzhou Bay wetland and their availability to Suaeda australis were analyzed. The Geoaccumulation Index (Igeo) values reveal that the sediments of three sampling sites may all be considered as moderately contaminated for Pb and Zn, and all sediments might be strongly contaminated with cadmium. The partitioning analyses revealed the measured heavy metals in three sites are bound to the exchangeable fraction at lower concentrations. The measured metals in a considerable amount are bound to the reducible and oxidizable fractions, and a high proportion of the measured heavy metals were distributed in the residual fraction in the sediment samples. The concentrations of Cd in each chemical phase extracted from the sediments are above natural global background levels and should be further investigated because of its toxicity. Suaeda australis has different accumulation abilities for the measured heavy metals. For the root and stem, the bioaccumulation ability assessed by bioaccumulation factor (BAF) for the measured heavy metals follows the decreasing order as: Cu〉Cr〉 Zn〉Cd, Pb, Hg. In the leaf, stronger bioaccumulation ability for Hg is exhibited. The heavy metal concentrations in Suaeda australis roots have positive correlations with their available fractions, while the exchangeable fraction of Cu and Cd might have be more important to both mature plant roots and seedling roots uptake than other fractions; as for Cr, the oxidizable fraction might make a greater contribution to the plant root uptake; as for Zn, the reducible fraction might make so contribution ; and for Pb, the oxidizable fraction might make a significant contribution to the mature plant root uptake, however, the exchangeable fraction might have a significant contribution to the seedling root uptake.展开更多
The field trial was established to investigate the effects of planting condition(soil water content,soil buried depth,rhizome length)and time on the survival rate and growth of Phragmites australis rhizomes.The result...The field trial was established to investigate the effects of planting condition(soil water content,soil buried depth,rhizome length)and time on the survival rate and growth of Phragmites australis rhizomes.The results indicated that survival rate and growth of Phragmites australis were affected by soil water content and rhizome length significantly,but not by soil buried depth.The survival rate of Phragmites australis in moist condition was higher than those in natural and flooding conditions.Rhizomes length did not affect survival rate,height and shoot number,but influenced biomass and buds number,which were higher with 15 cm length than those with 30 cm length.Based on the suitable soil water content(moisture)and rhizome length(15 cm),the survival rate of Phragmites australis was the highest when they were planted in May(91%)comparing to June and July.The number of shoots and buds were the highest in June,which had more suitable temperature and light for Phragmites australis to grow.Therefore,the optimizing transplanting condition of Phragmites australis was that rhizomes of 15 cm with some buds were planted in May with moisture(soil water content).展开更多
基金supported by the Major State Basic Research Development Program (No.2010CB951104)the Program for New Century Excellent Talents in University (No. NCET-09-0233)the National Water Pollution Control and Treatment Project in China (No.2008ZX07209-009)
文摘Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.
文摘The ion levels in the epidermal bulliform cells of epidermis, mesophyll cells and cells of the vascular bundle sheath of four ecotypes of reed (Phragmites australis (Cav.) Trin. ex Steud.) were determined by means of X_ray microanalysis. The results indicated that higher K +, Na +, Ca 2+ , Mg 2+ and Cl - were distributed in the vascular bundle sheath cells than in mesophyll cells and epidermal bulliform cells of the swamp ecotype. Higher Ca 2+ was found in the bulliform cells than in mesophyll cells and vascular bundle sheath cells, higher Mg 2+ in the mesophyll cells and higher K +, Na + and Cl - in the vascular bundle sheath cells of the dune ecotype. Higher Na + and Mg 2+ was determined in the mesophyll cells than in the bulliform cells and vascular bundle sheath cells, and higher K +, Ca 2+ and Cl - in the vascular bundle sheath cells of the light salt meadow ecotype. In the heavy salt meadow ecotype, higher Na + and Mg 2+ were accumulated in the bulliform cells than in mesophyll cells and vascular bundle sheath cells, but higher K +, Ca 2+ and Cl - in the mesophyll cells. Furthermore, the distributional conditions of the above five ions in leaf cells of the four ecotypes and their significance in the physiological adaptation of reed to habitat were discussed in detail.
基金Under the auspices of National Key R&D Program of China(No.2017YFC0505906)National Natural Science Foundation of China(No.51639001,51379012)Interdiscipline Research Funds of Beijing Normal University
文摘Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.
基金supported by the Control and Treatment of Water Pollution Implementation Scheme of the National Important Science and Technology Project(No. 2008ZX07526-002)the Hi-Tech Research and Development Program (863) of China (No. 2002AA601012-06)the National Basic Research Program (973) of China (No. 2002CB412409)
文摘Two plant populations of Phragmites australis and Typha orientalis grown in gravel and sediment substrate were studied to assess their capabilities for purifying polluted water in Taihu Lake, China. The substrate displayed most significant effects on the suspended matter (P 〈 0.01), with the reduction of 76%-87% and 52%--63% for P. australis, and 83%-86% and 45%-62% for T. orientalis in gravel substrate and sediment substrate, respectively. Both species and substrates significantly decreased the N and P concentrations of water body (P 〈 0.01). P. australis showed higher total N and P concentrations in tissues than T. orientalis and had a greater potential to remove nutrients from the lake. Phosphate was easily to concentrate in the belowground tissues, while nitrate concentration was higher in leaf and stalk. Therefore, harvesting the aboveground tissues could take most of nitrate out of the sediment. The saturate photosynthetic rate (Asat) of P. australis was higher than that of T. orientalis when grown in sediment substrate. But instance water-use- efficiency (WUEi) (A/E) and intrinsic water use efficiency (A/gs) showed the maximum values of two species grown in river water. With significant difference in gs, however, intercellular CO2 concentration (Ci) had no obvious difference in two species which indicated that high Asat value of P. australis might result from the increased carboxylation capacity of the mesophyll, because of the central role of N in photosynthetic enzymes. Our findings suggest that the plants could absorb most of nitrogen in polluted water, while gravel displayed a high capacity for absorbing the suspended matters and phosphate salts. Therefore, biological and physiological pathways for pollutant removal should be integrated.
基金This work was supported by the Hunan Education Department Project(NO.20A390)National Innovation and Entrepreneurship Training Program(S202010548007).
文摘Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.
基金supported by the French Ministry of Ecological Transition through the Direction Regionale de l’Environnement,de l’Amenagement et du Logement d’Occitanie,the Office Francais de la Biodiversite,and the Conservatoire d’Espaces Naturels d’Occitanie.
文摘Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge-nization and habitat succession towards woodland.Managers prevent excessive litter build-up with various in-terventions opening-up the reedbeds,such as grazing,which may be detrimental or suitable for some reed bird species.We assessed the effects of extensive grazing by horses and its cessation in the medium and long terms on reedbed structure,and the consequences on reed-nesting songbird densities in Estagnol Nature Reserve,a pro-tected wetland near the French Mediterranean coast.We compared reedbed structural features between grazed,newly ungrazed and old-ungrazed plots.During nine years,we censused four songbird species in spring and collected water level data in the same survey plots.Grazing reduced reedbed extent,rejuvenated the vegetation with more short green stems on a thinner litter,and produced higher structural heterogeneity and discontinuity compared to long-lasting non grazing.Newly ungrazed plot showed intermediate effects.All surveyed songbird total densities were similar among plots while species numbers and densities differed.Grazed reedbed was more attractive to Moustached Warblers(Acrocephalus melanopogon)and Great Reed Warblers(Acrocephalus arundi-naceus),likely due to the large edges and the high vegetation structural heterogeneity.However,Moustached Warblers were more negatively affected by higher water level in grazed reedbed,presumably because flooding prevents litter foraging.The newly ungrazed reedbed was not preferred by any species.All warbler species were found under low density in the old-ungrazed reedbed,where Reed Buntings(Emberiza schoeniclus)were exclu-sively found.Food availability related to thick litter layer may explain this predilection.Common Reed Warblers(Acrocephalus scirpaceus)were found everywhere in similar densities.We conclude that reedbed management b
基金supported in part by the Margaret and Herman Sokol Foundation(HF)China Scholarship Council(YQ)+6 种基金the State Key Laboratory of Estuarine and Coastal Research Open Research Fund(Ref #:SKLEC-KF201304)(HF,WZ,LY,YQ)supported in part by the U.S.Department of Energy,Office of Science,Office of Workforce Development for Teachers and Scientists(WDTS)under the Visiting Faculty Program(VFP)(HF)Portions of this work were performed at Beamline X27A,National Synchrotron Light Source(NSLS),and Biosciences Department,Brookhaven National LaboratoryWork in Bioscience Department,BNL,was partially supported by the Division of Chemical Sciences,Geosciences,and Biosciences,Office of Basic Energy Sciences of the US Department of Energy through Grant DEAC0298CH10886the National Science Foundation through grant MCB-1051675(CJL)X27A is supported in part by the U.S.Department of Energy--Geosciences(DE-FG02-92ER14244 to The University of Chicago-CARS)Use of the NSLS was supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under Contract No.DE-AC02-98CH10886
文摘Liberty State Park in New Jersey,USA,is a "brownfield" site containing various levels of contaminants.To investigate metal uptake and distributions in plants on the brownfield site,Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season(May–September)in 2011 at two sites with the high and low metal loads,respectively.The objective of this study was to understand the metal(Fe,Mn,Cu,Pb and Zn)concentration and spatial distributions in P.australis and T.latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence(μXRF)and synchrotron X-ray computed microtomography(μCMT)techniques.The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis.Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different.Significant correlations were found between metals(Cu,Mn,Pb and Zn)and Fe in the epidermis,implying that metals were scavenged by Fe oxides.The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific.The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.
基金the auspices of National Key Research and Development Program of China(No.2016YFC05004)National Project of China(No.41971140)Science Foundation for Excellent Youth Scholars of Jilin Province(No.20180520097JH)。
文摘Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC
文摘Two dominant species of Willow( Salix triandra )and Reed (Phragmites australis) along the Schelde Estuary(in Belgium)were selected in this research. The pigments of higher plant was used as biomarkers, the decomposition process of the two species were studied after they fall into the Schelde Estuary. After statistical analysis(Spearman rank order correlation, P <0 05), the results has shown the decomposition dynamics pattern of the pigments, and the willow showed different pattern in comparing with the reed, e.g. Chlorophyll a decomposition dynamics for willow is: y 1=12196 x 2 - 175895 x +1E+06+ k , R 2=0 5706 while for reed is: y 2=-37878 x 2+229782 x +734282+ k , R 2=0 9065 The precise time of the leaf litter spent in the water was also calculated as were less than 24 days, 24-37 days, longer than 37 days(willow)and less than 24 days, longer than 24 days(reed), the leaf litter fate of the two dominant species in the Schelde Estuary was also compared.
基金supported by the GEF Siberian Crane Wetland Project(UNEP DGEF C/F2712-03 GF-6030-03)the International Crane Foundation(ICF)
文摘With the support of the UNEP/GEF Siberian Crane Wetland Project,a five-year field survey of breeding waterbirds was conducted in four nature reserves - Zhalong,Keerqin,Xianghai and Momoge National Nature Reserves in the Songnen Plain for the period from May 2004 to August 2008.The purpose of the survey was to improve our understanding of the distribution and populations of breeding waterbirds in this area.The Red-crowned Crane (Grus japonensis) was the most important target species.Our survey results confirm that the Zhalong wetland is the largest breeding ground for the Red-crowned cranes in the Songnen Plain.Over 90% of the breeding birds were found in Zhalong,with numbers fluctuating from 112 to 275 over the years.Reed (Phragmites australis) is the most important plant species associated with breeding locations of this bird species.Water supply to the wetland can relieve pressure from deterioration of wetland habitats for the breeding of Red-crowned cranes.However,a sound scientific basis for the water supply mechanism is the key to better management of their habitat and a prerequisite for ensuring the breeding success of the Red-crowned Crane.
基金National Natural Science Foundation of China(No.81673552)
文摘Objective Using authentic raw herbal materials is fundamental to herbal medicine quality. Cuscuta chinensis and C. australis are two important species of Cuscutae Semen recorded in Chinese Pharmacopoeia. Due to having tiny bodies of seeds, it is extremely difficult to differentiate them from adulterants and closely related species by morphologic characteristics, leading to serious safety problems. Methods In this study, we developed a fast and efficient method to identify Cuscutae Semen on the market. First, a total of 207 ITS2 sequences representing 45 related species of Cuscutae Semen were collected to construct a standard DNA barcode database, then 33 commercial samples purchased from markets were analyzed by BLAST, and Neighbor-joining tree was used to verify the efficacy of the database. Results The percentage of counterfeits and adulterants in the 33 commercial samples were up to 69.7%, and only 10 commercial products were found to be genuine. The adulterated species included 11 species (Amaranthus hybridus, Brassica carinata, Brassica juncea var. megarrhiza, Chenopodium album, Corispermum heptapotamicum, Cuscuta alata, Cuscuta japonica, Cuscuta monogyna, Foeniculum vulgare, Glycine max, and Medicago sativa). Conclusion DNA barcoding is a fast and efficient method to identify Cuscutae Semen on the market.
文摘In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sampling sites of Quanzhou Bay wetland and their availability to Suaeda australis were analyzed. The Geoaccumulation Index (Igeo) values reveal that the sediments of three sampling sites may all be considered as moderately contaminated for Pb and Zn, and all sediments might be strongly contaminated with cadmium. The partitioning analyses revealed the measured heavy metals in three sites are bound to the exchangeable fraction at lower concentrations. The measured metals in a considerable amount are bound to the reducible and oxidizable fractions, and a high proportion of the measured heavy metals were distributed in the residual fraction in the sediment samples. The concentrations of Cd in each chemical phase extracted from the sediments are above natural global background levels and should be further investigated because of its toxicity. Suaeda australis has different accumulation abilities for the measured heavy metals. For the root and stem, the bioaccumulation ability assessed by bioaccumulation factor (BAF) for the measured heavy metals follows the decreasing order as: Cu〉Cr〉 Zn〉Cd, Pb, Hg. In the leaf, stronger bioaccumulation ability for Hg is exhibited. The heavy metal concentrations in Suaeda australis roots have positive correlations with their available fractions, while the exchangeable fraction of Cu and Cd might have be more important to both mature plant roots and seedling roots uptake than other fractions; as for Cr, the oxidizable fraction might make a greater contribution to the plant root uptake; as for Zn, the reducible fraction might make so contribution ; and for Pb, the oxidizable fraction might make a significant contribution to the mature plant root uptake, however, the exchangeable fraction might have a significant contribution to the seedling root uptake.
基金Under the auspices of the National Natural Science Foundation of China(31100403)National Basic Research Program of China(No:2012CB956100)
文摘The field trial was established to investigate the effects of planting condition(soil water content,soil buried depth,rhizome length)and time on the survival rate and growth of Phragmites australis rhizomes.The results indicated that survival rate and growth of Phragmites australis were affected by soil water content and rhizome length significantly,but not by soil buried depth.The survival rate of Phragmites australis in moist condition was higher than those in natural and flooding conditions.Rhizomes length did not affect survival rate,height and shoot number,but influenced biomass and buds number,which were higher with 15 cm length than those with 30 cm length.Based on the suitable soil water content(moisture)and rhizome length(15 cm),the survival rate of Phragmites australis was the highest when they were planted in May(91%)comparing to June and July.The number of shoots and buds were the highest in June,which had more suitable temperature and light for Phragmites australis to grow.Therefore,the optimizing transplanting condition of Phragmites australis was that rhizomes of 15 cm with some buds were planted in May with moisture(soil water content).