The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formati...The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formation of a DNA nanostructure pattern without utilizing the molecular interactions in nanotechnology field remains difficult. In this article, we use the optimal concentration and adsorption time of origami to induce DNA origami in the form of a large-scale 2D pattern on mica without changing the origami itself. DNA origami structures can form a pattern by close packing of symmetric and electrostatic interactions between ions, which was confirmed by the atomic force microscopy images. Furthermore, we identified favorable conditions for the concentration of enable pattern formation with DNA origami. This work provides an insight to understand the adsorption of DNA on mica and guides researches on regular DNA nanostructure pattern, which can serve as templates for pattern formation of proteins or other biomolecules.展开更多
基金supported by the National Natural Science Foundation of China(No.31670871)the Open Large Infrastructure Research of Chinese Academy of Sciences+1 种基金the Chinese Academy of Sciences Knowledge Innovation Project(No.QYZDJ-SSW-SLH019)the LU JIAXI International team program supported by the K.C.Wong Education Foundation and CAS
文摘The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formation of a DNA nanostructure pattern without utilizing the molecular interactions in nanotechnology field remains difficult. In this article, we use the optimal concentration and adsorption time of origami to induce DNA origami in the form of a large-scale 2D pattern on mica without changing the origami itself. DNA origami structures can form a pattern by close packing of symmetric and electrostatic interactions between ions, which was confirmed by the atomic force microscopy images. Furthermore, we identified favorable conditions for the concentration of enable pattern formation with DNA origami. This work provides an insight to understand the adsorption of DNA on mica and guides researches on regular DNA nanostructure pattern, which can serve as templates for pattern formation of proteins or other biomolecules.