The multi-spatial variability modes of the At-lantic Meridional Overturning Circulation (MOO are iden-tified in the natural coupled simulation of two climate models,the MOC either oscillates at decadal scales with str...The multi-spatial variability modes of the At-lantic Meridional Overturning Circulation (MOO are iden-tified in the natural coupled simulation of two climate models,the MOC either oscillates at decadal scales with strong cross-equatorial flow or fluctuates locally at interannual scaleswith weaker cross-equatorial flow. Former studies mainlyemphasize the paleo-environmental and paleo-climatic im-pacts of the meridional overturning states transition; thisanalysis indicates the existence of the multi-spatial variabilitymodes of the MOC at interannual to decadal scales. Furtheranalysis indicates that the conventionally used MOC index,which is defined as the maximum zonal mean meridionalstream-function of the North Atlantic, cannot properly de-scribe the multi-spatial variability characteristics of theMOC.展开更多
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitu...The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.展开更多
The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical s...The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical simulations(1900-2013), we evaluate the model performance in simulating the observed characteristics of the Arctic climate system, which includes air temperature, precipitation, the Arctic Oscillation(AO), ocean temperature/salinity,the Atlantic meridional overturning circulation(AMOC), snow cover, and sea ice. The model-data comparisons indicate that the CAMS-CSM reproduces spatial patterns of climatological mean air temperature over the Arctic(60°-90°N) and a rapid warming trend from 1979 to 2013. However, the warming trend is overestimated south of the Arctic Circle, implying a subdued Arctic amplification. The distribution of climatological precipitation in the Arctic is broadly captured in the model, whereas it shows limited skills in depicting the overall increasing trend. The AO can be reproduced by the CAMS-CSM in terms of reasonable patterns and variability. Regarding the ocean simulation, the model underestimates the AMOC and zonally averaged ocean temperatures and salinity above a depth of 500 m, and it fails to reproduce the observed increasing trend in the upper ocean heat content in the Arctic. The largescale distribution of the snow cover extent(SCE) in the Northern Hemisphere and the overall decreasing trend in the spring SCE are captured by the CAMS-CSM, while the biased magnitudes exist. Due to the underestimation of the AMOC and the poor quantification of air–sea interaction, the CAMS-CSM overestimates regional sea ice and underestimates the observed decreasing trend in Arctic sea–ice area in September. Overall, the CAMS-CSM reproduces a climatological distribution of the Arctic climate system and general trends from 1979 to 2013 compared with the observations, but it shows limited skills in modeling local trends and interannual variability.展开更多
Given the likelihood of future reductions in the strength of the Atlantic Meridional Overturning Circulation(AMOC),it is important to document how changes in the AMOC have altered climate patterns in the past and to a...Given the likelihood of future reductions in the strength of the Atlantic Meridional Overturning Circulation(AMOC),it is important to document how changes in the AMOC have altered climate patterns in the past and to assess the skill of coupled climate models in reproducing these teleconnections.Of past abrupt changes in the AMOC,the 8.2 ka event provides a particularly useful case study because its duration,magnitude of AMOC reduction and background climate state are closest to conditions expected in the future.In this research,we present an expanded proxy synthesis of the 8.2 ka event in monsoonal Asia,including new high-resolution lake and bog records,more sites from the East Asia monsoon region and proxies of winter monsoon strength.We compare proxy evidence with a new simulation of the 8.2 ka event using the Community Climate System Model version 3(CCSM3) and prescribing North Atlantic freshwater forcing according to the latest reconstructions.We find clear and objectively-determined evidence for 8.2 ka climate anomalies at nearly all of the fourteen proxy sites,emphasizing the strong and widespread impacts of the event in monsoonal Asia during both summer and winter seasons.The model simulation corroborates that these anomalies,described generally as a weakening of the summer monsoon and strengthening of the winter monsoon,were likely caused by a reduction of the AMOC.Examination of regional anomalies in East Asia reveals some spatial heterogeneity,however,that in the model simulation is caused by contraction of the seasonal migration of the subtropical monsoon front.The duration of climate anomalies at 8.2 ka in monsoonal Asia,both in proxy records and the model simulation,generally matches the duration of the event in Greenland ice core δ^(18)O,further supporting a tight connection to the North Atlantic.展开更多
The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbati...The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OttT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70- 25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.展开更多
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifi...The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr.展开更多
In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed ExpTide and ExpContr...In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed ExpTide and ExpControl,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in ExpTide. Approximately 21% more heat is stored in the ocean in ExpTide(1.10×10^24 J) than in ExpControl(0.91×10^24 J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in ExpTide are both larger than those observed in ExpControl. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in ExpTide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.展开更多
An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first cent...An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.展开更多
基于美国大气研究中心的CCSM3(Community Climate System Model version 3)模式,对淡水扰动试验中不同大西洋经圈翻转环流(Atlantic Meridional Overturning Circulation,AMOC)平均强度下,中国气候的年代际响应特征进行研究。结果表明:...基于美国大气研究中心的CCSM3(Community Climate System Model version 3)模式,对淡水扰动试验中不同大西洋经圈翻转环流(Atlantic Meridional Overturning Circulation,AMOC)平均强度下,中国气候的年代际响应特征进行研究。结果表明:在年代际尺度上,中国区域地表气温和降水强度变化与AMOC强度变化的关系紧密,然而,不同平均强度下,中国气候的年代际响应特征不同。高平均强度下,中国区域地表气温升高,中国北部降水增多、南部降水减少;低平均强度下,则反之。不同平均强度下,中国区域年平均地表气温和降水EOF第一特征向量的空间分布存在显著差异:高平均强度下,地表气温呈现中国全区域一致的分布型,降水呈现自北向南的“-+-”型的雨带分布;低平均强度下,地表气温呈现中国区域南北反相的偶极子分布型,降水呈现自北向南的“-+”型的雨带分布。与低平均强度相比,在高平均强度下,EOF第一模态的时间系数的年代际变化尺度均更长。展开更多
文摘The multi-spatial variability modes of the At-lantic Meridional Overturning Circulation (MOO are iden-tified in the natural coupled simulation of two climate models,the MOC either oscillates at decadal scales with strong cross-equatorial flow or fluctuates locally at interannual scaleswith weaker cross-equatorial flow. Former studies mainlyemphasize the paleo-environmental and paleo-climatic im-pacts of the meridional overturning states transition; thisanalysis indicates the existence of the multi-spatial variabilitymodes of the MOC at interannual to decadal scales. Furtheranalysis indicates that the conventionally used MOC index,which is defined as the maximum zonal mean meridionalstream-function of the North Atlantic, cannot properly de-scribe the multi-spatial variability characteristics of theMOC.
基金The National Key Program for Developing Basic Sciences of China under contract No.2013CB956204the National Natural Science Foundation of China under contract Nos 41275084 and 41576025the Strategic Priority Research of the Chinese Academy of Science under contract Nos XDA01020304 and DA05110302
文摘The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.
基金Supported by the National Key Research and Development Program of China(2016YFA0602704)National Natural Science Foundation of China(41505068)
文摘The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical simulations(1900-2013), we evaluate the model performance in simulating the observed characteristics of the Arctic climate system, which includes air temperature, precipitation, the Arctic Oscillation(AO), ocean temperature/salinity,the Atlantic meridional overturning circulation(AMOC), snow cover, and sea ice. The model-data comparisons indicate that the CAMS-CSM reproduces spatial patterns of climatological mean air temperature over the Arctic(60°-90°N) and a rapid warming trend from 1979 to 2013. However, the warming trend is overestimated south of the Arctic Circle, implying a subdued Arctic amplification. The distribution of climatological precipitation in the Arctic is broadly captured in the model, whereas it shows limited skills in depicting the overall increasing trend. The AO can be reproduced by the CAMS-CSM in terms of reasonable patterns and variability. Regarding the ocean simulation, the model underestimates the AMOC and zonally averaged ocean temperatures and salinity above a depth of 500 m, and it fails to reproduce the observed increasing trend in the upper ocean heat content in the Arctic. The largescale distribution of the snow cover extent(SCE) in the Northern Hemisphere and the overall decreasing trend in the spring SCE are captured by the CAMS-CSM, while the biased magnitudes exist. Due to the underestimation of the AMOC and the poor quantification of air–sea interaction, the CAMS-CSM overestimates regional sea ice and underestimates the observed decreasing trend in Arctic sea–ice area in September. Overall, the CAMS-CSM reproduces a climatological distribution of the Arctic climate system and general trends from 1979 to 2013 compared with the observations, but it shows limited skills in modeling local trends and interannual variability.
基金The National Science Foundation,Office of Polar Programs,to Morrill and Otto-Bliesner
文摘Given the likelihood of future reductions in the strength of the Atlantic Meridional Overturning Circulation(AMOC),it is important to document how changes in the AMOC have altered climate patterns in the past and to assess the skill of coupled climate models in reproducing these teleconnections.Of past abrupt changes in the AMOC,the 8.2 ka event provides a particularly useful case study because its duration,magnitude of AMOC reduction and background climate state are closest to conditions expected in the future.In this research,we present an expanded proxy synthesis of the 8.2 ka event in monsoonal Asia,including new high-resolution lake and bog records,more sites from the East Asia monsoon region and proxies of winter monsoon strength.We compare proxy evidence with a new simulation of the 8.2 ka event using the Community Climate System Model version 3(CCSM3) and prescribing North Atlantic freshwater forcing according to the latest reconstructions.We find clear and objectively-determined evidence for 8.2 ka climate anomalies at nearly all of the fourteen proxy sites,emphasizing the strong and widespread impacts of the event in monsoonal Asia during both summer and winter seasons.The model simulation corroborates that these anomalies,described generally as a weakening of the summer monsoon and strengthening of the winter monsoon,were likely caused by a reduction of the AMOC.Examination of regional anomalies in East Asia reveals some spatial heterogeneity,however,that in the model simulation is caused by contraction of the seasonal migration of the subtropical monsoon front.The duration of climate anomalies at 8.2 ka in monsoonal Asia,both in proxy records and the model simulation,generally matches the duration of the event in Greenland ice core δ^(18)O,further supporting a tight connection to the North Atlantic.
基金Supported by the National Basic Research Program of China(2009CB421401)Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration(GYHY200906018)+1 种基金Risk Assessment on Severe Meteorological and Hydrological Disasters(KZCX2-YW-Q03-3)National Natural Science Foundation of China(90711004)
文摘The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OttT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70- 25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.
基金supported by the National Natural Science Foundation of China (No. 41176002)
文摘The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr.
基金The National Key Research and Development Program for Developing Basic Sciences under contract Nos2016YFC1401401 and 2016YFC1401601the “Strategic Priority Research Program” of the Chinese Academy of Sciences under contract Nos XDA11010304,XDA05110302 and XDC01040100the National Natural Science Foundation of China under contract Nos41576026,41576025,41776030 and 41931183
文摘In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed ExpTide and ExpControl,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in ExpTide. Approximately 21% more heat is stored in the ocean in ExpTide(1.10×10^24 J) than in ExpControl(0.91×10^24 J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in ExpTide are both larger than those observed in ExpControl. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in ExpTide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.
基金The Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No.CHINARE2016-04-04the National Natural Science Foundation of China under contract No.41406027+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the Basic Research Operating Funds of The First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2015P03 and 2015P01
文摘An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.
文摘基于美国大气研究中心的CCSM3(Community Climate System Model version 3)模式,对淡水扰动试验中不同大西洋经圈翻转环流(Atlantic Meridional Overturning Circulation,AMOC)平均强度下,中国气候的年代际响应特征进行研究。结果表明:在年代际尺度上,中国区域地表气温和降水强度变化与AMOC强度变化的关系紧密,然而,不同平均强度下,中国气候的年代际响应特征不同。高平均强度下,中国区域地表气温升高,中国北部降水增多、南部降水减少;低平均强度下,则反之。不同平均强度下,中国区域年平均地表气温和降水EOF第一特征向量的空间分布存在显著差异:高平均强度下,地表气温呈现中国全区域一致的分布型,降水呈现自北向南的“-+-”型的雨带分布;低平均强度下,地表气温呈现中国区域南北反相的偶极子分布型,降水呈现自北向南的“-+”型的雨带分布。与低平均强度相比,在高平均强度下,EOF第一模态的时间系数的年代际变化尺度均更长。