期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
High Order IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings
1
作者 Zheng Chen Lin Mu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期325-339,共15页
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g... In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property. 展开更多
关键词 Stochastic Galerkin scheme linear transport equations generalized polynomial approach stochastic asymptotic-preserving property
下载PDF
MULTIDIMENSIONAL RELAXATION APPROXIMATIONS FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 被引量:1
2
作者 Mohammed Seaid 《Journal of Computational Mathematics》 SCIE CSCD 2007年第4期440-457,共18页
We construct and implement a non-oscillatory relaxation scheme for multidimensional hyperbolic systems of conservation laws. The method transforms the nonlinear hyperbolic system to a semilinear model with a relaxatio... We construct and implement a non-oscillatory relaxation scheme for multidimensional hyperbolic systems of conservation laws. The method transforms the nonlinear hyperbolic system to a semilinear model with a relaxation source term and linear characteristics which can be solved numerically without using either Riemann solver or linear iterations. To discretize the relaxation system we consider a high-resolution reconstruction in space and a TVD Runge-Kutta time integration. Detailed formulation of the scheme is given for problems in three space dimensions and numerical experiments are implemented in both scalar and system cases to show the effectiveness of the method. 展开更多
关键词 Multidimensional hyperbolic systems Relaxation methods Non-oscillatory reconstructions asymptotic-preserving schemes.
原文传递
High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system 被引量:2
3
作者 Yanqun Jiang Xun Chen +2 位作者 Xu Zhang Tao Xiong Shuguang Zhou 《Advances in Aerodynamics》 2020年第1期555-578,共24页
The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,wh... The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,while it can deal with stiffness and accuracy in the low Mach number regime.This paper designs a high order semi-implicit weighted compact nonlinear scheme(WCNS)for the all-Mach isentropic Euler system of compressible gas dynamics.To avoid severe Courant-Friedrichs-Levy(CFL)restrictions for low Mach flows,the nonlinear fluxes in the Euler equations are split into stiff and non-stiff components.A third-order implicit-explicit(IMEX)method is used for the time discretization of the split components and a fifth-order WCNS is used for the spatial discretization of flux derivatives.The high order IMEX method is asymptotic preserving and asymptotically accurate in the zero Mach number limit.One-and two-dimensional numerical examples in both compressible and incompressible regimes are given to demonstrate the advantages of the designed IMEX WCNS. 展开更多
关键词 High order scheme IMEX time discretization WCNS asymptotic-preserving property Low Mach number Isentropic Euler equations
原文传递
Asymptotic-Preserving Discrete Schemes for Non-Equilibrium Radiation Diffusion Problem in Spherical and Cylindrical Symmetrical Geometries
4
作者 Xia Cui Zhi-Jun Shen Guang-Wei Yuan 《Communications in Computational Physics》 SCIE 2018年第1期198-229,共32页
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f... We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems. 展开更多
关键词 Spherical symmetrical geometry cylindrical symmetrical geometry non-equilibrium radiation diffusion problem fully discrete schemes asymptotic-preserving second order accuracy
原文传递
A Numerical Scheme for the Quantum Fokker-Planck-Landau Equation Efficient in the Fluid Regime
5
作者 Jingwei Hu Shi Jin Bokai Yan 《Communications in Computational Physics》 SCIE 2012年第10期1541-1561,共21页
We construct an efficient numerical scheme for the quantum Fokker-Planck-Landau(FPL)equation that works uniformly from kinetic to fluid regimes.Such a scheme inevitably needs an implicit discretization of the nonlinea... We construct an efficient numerical scheme for the quantum Fokker-Planck-Landau(FPL)equation that works uniformly from kinetic to fluid regimes.Such a scheme inevitably needs an implicit discretization of the nonlinear collision operator,which is difficult to invert.Inspired by work[9]we seek a linear operator to penalize the quantum FPL collision term QqFPL in order to remove the stiffness induced by the small Knudsen number.However,there is no suitable simple quantum operator serving the purpose and for this kind of operators one has to solve the complicated quantum Maxwellians(Bose-Einstein or Fermi-Dirac distribution).In this paper,we propose to penalize QqFPL by the”classical”linear Fokker-Planck operator.It is based on the observation that the classicalMaxwellian,with the temperature replaced by the internal energy,has the same first five moments as the quantum Maxwellian.Numerical results for Bose and Fermi gases are presented to illustrate the efficiency of the scheme in both fluid and kinetic regimes. 展开更多
关键词 Quantum Fokker-Planck-Landau equation fluid limit asymptotic-preserving scheme
原文传递
Degenerate Anisotropic Elliptic Problems and Magnetized Plasma Simulations
6
作者 Stephane Brull Pierre Degond Fabrice Deluzet 《Communications in Computational Physics》 SCIE 2012年第1期147-178,共32页
This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem.The numerical method is designed for arbitrary spacedependent anisotropy directions and does not require any specially ... This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem.The numerical method is designed for arbitrary spacedependent anisotropy directions and does not require any specially adapted coordinate system.It is also designed to be equally accurate in the strongly and the mildly anisotropic cases.The method is applied to the Euler-Lorentz system,in the drift-fluid limit.This system provides a model for magnetized plasmas. 展开更多
关键词 Anisotropic elliptic problem asymptotic-preserving scheme Lorentz force large magnetic field low-Mach number drift-fluid limit
原文传递
加权本质无振荡方法综述
7
作者 邱建贤 熊涛 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期979-990,共12页
高精度加权本质无振荡(weighted essentially non-oscillatory,WENO)格式是求解可压缩双曲守恒律的一类重要的数值格式.它基于有限差分和有限体积两类框架,通过不同模版的非线性加权组合来实现对激波等间断解的高分辨率数值模拟,并克服... 高精度加权本质无振荡(weighted essentially non-oscillatory,WENO)格式是求解可压缩双曲守恒律的一类重要的数值格式.它基于有限差分和有限体积两类框架,通过不同模版的非线性加权组合来实现对激波等间断解的高分辨率数值模拟,并克服虚假的数值振荡.近些年来,基于非等距模板和改变加权组合方式从而提高WENO格式的鲁棒性和计算效率,高维问题结构和无结构网格的可拓展性,和对稳态问题的快速低残差收敛性仍是WENO格式设计的热门研究课题.同时将WENO格式和高阶显隐(implicit-explicit,IMEX)Runge-Kutta时间离散格式结合,应用于极端条件下的复杂流动问题的高效稳健数值模拟也是一个非常活跃的研究方向.我们开展了一系列的高精度WENO格式的设计和应用的研究,包括设计了大小非等距模板任意正线性权组合的新型WENO-ZQ格式,基于Hermite插值或重构的Hermite WENO(HWENO)格式,和对全速域欧拉、浅水波等方程组一致稳定的渐近保持WENO格式等,大大增强了WENO型格式的灵活性,也丰富了WENO格式的应用领域,将在国防工程、航空航天、天体物理、大气海洋等领域有广阔的应用前景. 展开更多
关键词 加权本质无振荡方法 Hermite型加权本质无振荡方法 双曲守恒律 渐近保持
下载PDF
准中性等离子体模拟中的两种渐近保持PIC算法研究 被引量:3
8
作者 孙安邦 毛根旺 +4 位作者 P.Degond F.Deluzet L.Navoret M.-H.Vignal 夏广庆 《真空科学与技术学报》 EI CAS CSCD 北大核心 2010年第1期6-10,共5页
针对准中性无碰撞等离子体的Vlasov方程及与其相耦合的求解电势的Poisson方程所组成的Vlasov-Poisson系统,提出了两种渐近保持PIC算法,并将其运用到一维周期性波动等离子体模型上。与传统PIC算法相比较,两种渐近保持PIC算法解决了Vlasov... 针对准中性无碰撞等离子体的Vlasov方程及与其相耦合的求解电势的Poisson方程所组成的Vlasov-Poisson系统,提出了两种渐近保持PIC算法,并将其运用到一维周期性波动等离子体模型上。与传统PIC算法相比较,两种渐近保持PIC算法解决了Vlasov-Poisson系统多尺度参数中的小量束缚问题,时间和空间步长的选取可以克服传统粒子模型中等离子体周期及德拜长度的限制,且模拟结果稳定正确,大大提高了计算效率。 展开更多
关键词 渐近保持 Vlasov-Poisson 准中性 PIC 多尺度
下载PDF
A UNIFORM FIRST-ORDER METHOD FOR THE DISCRETE ORDINATE TRANSPORT EQUATION WITH INTERFACES IN X,Y-GEOMETRY
9
作者 Min Tang 《Journal of Computational Mathematics》 SCIE CSCD 2009年第6期764-786,共23页
A uniformly first-order convergent numerical method for the discrete-ordinate transport equation in the rectangle geometry is proposed in this paper. Firstly we approximate the scattering coefficients and source terms... A uniformly first-order convergent numerical method for the discrete-ordinate transport equation in the rectangle geometry is proposed in this paper. Firstly we approximate the scattering coefficients and source terms by piecewise constants determined by their cell averages. Then for each cell, following the work of De Barros and Larsen [1, 19], the solution at the cell edge is approximated by its average along the edge. As a result, the solution of the system of equations for the cell edge averages in each cell can be obtained analytically. Finally, we piece together the numerical solution with the neighboring cells using the interface conditions. When there is no interface or boundary layer, this method is asymptotic-preserving, which implies that coarse meshes (meshes that do not resolve the mean free path) can be used to obtain good numerical approximations. Moreover, the uniform first-order convergence with respect to the mean free path is shown numerically and the rigorous proof is provided. 展开更多
关键词 Transport equation Interface Diffusion limit asymptotic preserving Uniform numerical convergence X Y-geometry.
原文传递
辐射输运方程的统一气体动理学格式
10
作者 江松 徐昆 +1 位作者 孙文俊 许小静 《中国科学:数学》 CSCD 北大核心 2021年第6期799-832,共34页
辐射输运方程的数值模拟在天体物理、武器物理和惯性约束与磁约束聚变等研究中都起着非常重要的作用.在实际问题中,背景介质的不透明度系数决定了辐射光子在其中的传输行为.光性薄(不透明度系数小)的介质对辐射光子是透明的,光子与背景... 辐射输运方程的数值模拟在天体物理、武器物理和惯性约束与磁约束聚变等研究中都起着非常重要的作用.在实际问题中,背景介质的不透明度系数决定了辐射光子在其中的传输行为.光性薄(不透明度系数小)的介质对辐射光子是透明的,光子与背景介质的相互作用弱,光子传输具有输运传播性质;而光性厚(不透明度系数大)的介质对辐射光子是不透明的,光子与背景介质的相互作用强,光子传输具有扩散性质.因此在辐射输运方程的计算中,如何设计既能得到光子输运传播性质又能捕捉光子扩散传播性质的渐近保持离散格式是目前一个非常活跃和前沿的研究方向.本文简要介绍近几年在辐射输运方程的渐近保持统一气体动理学格式(unified gas kinetic scheme,UGKS)研究方面的进展.本文主要以灰体辐射输运方程为例,详细介绍UGKS的构造方法并给出其渐近分析.同时,结合角度有限元方法和球谐函数展开的方法,介绍如何减弱/去除基于离散纵标法的UGKS具有射线效应的问题,以及相应的改进渐近保持格式.此外,也介绍了将渐近保持的UGKS应用拓展到考虑流体运动的完全辐射流体力学方程组.最后,用一些数值例子验证了格式的渐近保持性和保正性等性质. 展开更多
关键词 辐射输运方程 渐近保持 保正 统一气体动理学格式 辐射流体力学方程组
原文传递
渐近保持PIC算法在等离子体粒子模拟中的应用
11
作者 孙安邦 毛根旺 +3 位作者 Degond P Deluzet F Navoret L Vignal M-H 《核聚变与等离子体物理》 CAS CSCD 北大核心 2010年第2期138-142,共5页
针对准中性Vlasov-Poisson系统中多尺度物理参数共存的问题开展研究,采用渐近保持格式推导出与Vlasov方程相耦合的Poisson方程。数值模拟了一维等离子体在真空中的膨胀,比较了渐近保持PIC算法与传统PIC算法模拟结果的异同。结果表明:两... 针对准中性Vlasov-Poisson系统中多尺度物理参数共存的问题开展研究,采用渐近保持格式推导出与Vlasov方程相耦合的Poisson方程。数值模拟了一维等离子体在真空中的膨胀,比较了渐近保持PIC算法与传统PIC算法模拟结果的异同。结果表明:两种算法在满足多尺度中小尺度量限制的前提下,其结果保持高度一致;且在克服小尺度量束缚时,渐近保持PIC算法依然可以正确地模拟等离子体的物理行为,大大节省了计算时间。 展开更多
关键词 Vlasov-Poisson 渐近保持 PIC 多尺度
下载PDF
THE ASYMPTOTIC PRESERVING UNIFIED GAS KINETIC SCHEME FOR GRAY RADIATIVE TRANSFER EQUATIONS ON DISTORTED QUADRILATERAL MESHES 被引量:1
12
作者 Wenjun Sun Qinghong Zeng Shanggui Li 《Annals of Applied Mathematics》 2016年第2期141-165,共25页
In this paper,we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes.Different from the former scheme [J.Comput.Phys.... In this paper,we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes.Different from the former scheme [J.Comput.Phys.285(2015),265-279] on uniform meshes,in this paper,in order to obtain the boundary fluxes based on the framework of unified gas kinetic scheme(UGKS),we use the real multi-dimensional reconstruction for the initial data and the macro-terms in the equation of the gray transfer equations.We can prove that the scheme is asymptotic preserving,and especially for the distorted quadrilateral meshes,a nine-point scheme [SIAM J.SCI.COMPUT.30(2008),1341-1361] for the diffusion limit equations is obtained,which is naturally reduced to standard five-point scheme for the orthogonal meshes.The numerical examples on distorted meshes are included to validate the current approach. 展开更多
关键词 gray radiative transfer equations distorted quadrilateral meshes asymptotic preserving unified gas kinetic scheme nine-point diffusion scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部