This paper is focused on the first study of microbiota of a moderate climate orchid from Northern hemisphere—Moorland Spotted Orchid Dactylorhiza maculata (L.) Soó growing in its natural habitat. There have been...This paper is focused on the first study of microbiota of a moderate climate orchid from Northern hemisphere—Moorland Spotted Orchid Dactylorhiza maculata (L.) Soó growing in its natural habitat. There have been obtained detailed data concerning bacterial communities from rhizosphere and inner tissues of young and old tubers. It was done using the biomarker analysis method where the markers were detected by gas chromatography—mass-spectrometry. It is shown that the number of bacterial genera and the bacteria amount (105 - 108 CFU per gram of dry weight) in D. maculata microbial complexes decreases from rhizosphere to old tuber to young. At the same time all three bacterial cenoses closely resemble each other in biodiversity. Their constant members are gg. Hyphomicrobium, Methylococcus, Nitrobacter, Pseudomonas and Sphingomonas (Proteobacteria), Bacillus and Clostridium (Firmicutes), Rhodococcus and Streptomyces (Actinobacteria). There were found differences peculiar to the taxonomic structure of each microbial complex. The rhizosphere is dominated by Actinobacteria while in inner tissues Proteobacteria are prevalent. The bacteria of gg. Ochrobactrum, Xanthomonas, Butyrivibrio, Corynebacterium, Mycobacterium, Propionibacterium, Sphingobacterium and specific iron reducers were shown to belong to rhizosphere community. Genera of Agrobacterium and Bifidobacterium were found only in the endophytic microbiota of the young tuber while g. Aeromonas展开更多
Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic ...Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha-pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations ofα- pinene to D. valens and the three most frequently isolated yeasts and bacteria ofD. valens, and further assayed microorganisms' capabilities to degrade α-pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α-pinene applied in media compared to controls. The tolerance of experimental microorganisms to α-pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%-50% of α-pinene compared to controls in 24 h in vitro. The microorganisms capable of α-pinene degradation in vitro and their tolerance to high levels ofα-pinene suggested that D. valens- associated microorganisms may help both microorganisms and the bark beetle overcome host α-pinene defense.展开更多
Coral reefs have high primary productivity and are one of the most important ecosystems in the ocean. However, the health and stability of coral reefs are constantly threatened by climate change and human activities. ...Coral reefs have high primary productivity and are one of the most important ecosystems in the ocean. However, the health and stability of coral reefs are constantly threatened by climate change and human activities. The coral holobiont is a complex symbiosis between the coral animal, zooxanthellae, and the associated community of microorganisms including bacteria, archaea, viruses, etc. Coral-associated microorganisms are found to be important for the maintenance of coral health,and they are proposed to contribute to the acclimatization and adaptation of reef-building corals under rapid climate change. The coral-microbe interaction mediated by chemical signalling molecules is an important driving force for shaping the microbial communities. Herein, we summarize our current knowledge of the chemical signalling molecules involved in the interaction of the coral holobiont. Specifically, the cooperation and competition among microbes mediated by N-acyl homoserine lactones(AHLs), the interrelationship between microbes and hosts mediated by dimethylsulfoniopropionate(DMSP) and nitric oxide(NO), and the response of corals and microorganisms to reactive oxygen species(ROS) under environmental stresses are highlighted in this review. We further discuss the potential of manipulating the coral microbiome using signalling molecules to restore and protect coral reefs.展开更多
Although they are the largest taxonomic group of animals, relatively few insects have been examined for symbiotic relationships with micro-organisms. However, this is rapidly changing because of the potential for exam...Although they are the largest taxonomic group of animals, relatively few insects have been examined for symbiotic relationships with micro-organisms. However, this is rapidly changing because of the potential for examination of the natural insectmicrobe-lignocellulose interactions to provide insights for biofuel technology. Micro-organisms associated with lignocellulose-consuming insects often facilitate the digestion of the recalcitrant plant diet; therefore these microbial communities may be mined for novel lignocellulose-degrading microbes, or for robust and inexpensive biocatalysts necessary for economically feasible biofuel production from lignocellulose. These insect-microbe interactions are influenced by the ecosystem and specific lignocellulose diet, and appre- ciating the whole ecosystem-insect-microbiota-lignocellulose as a natural biorefinery provides a rich and diverse framework from which to design novel industrial processes. One such natural biorefinery, the Tipula abdominalis larvae in riparian ecosystems, is reviewed herein with applications for biochemical processes and overcoming challenges involved in conversion of lignocellulosic biomass to fuel ethanol. From the dense and diverse T. abdominalis larval hindgut microbial community, a cellulolytic bacterial isolate, 27C64, demonstrated enzymatic activity toward many model plant polymers and also produced a bacterial antibiotic. 27C64 was co-cultured with yeast in fermentation of pine to ethanol, which allowed for a 20% reduction of commercial enzyme. In this study, a micro-organism from a lignocellulose-consuming insect was successfully applied for improvement of biomass-to-biofuel technology.展开更多
文摘This paper is focused on the first study of microbiota of a moderate climate orchid from Northern hemisphere—Moorland Spotted Orchid Dactylorhiza maculata (L.) Soó growing in its natural habitat. There have been obtained detailed data concerning bacterial communities from rhizosphere and inner tissues of young and old tubers. It was done using the biomarker analysis method where the markers were detected by gas chromatography—mass-spectrometry. It is shown that the number of bacterial genera and the bacteria amount (105 - 108 CFU per gram of dry weight) in D. maculata microbial complexes decreases from rhizosphere to old tuber to young. At the same time all three bacterial cenoses closely resemble each other in biodiversity. Their constant members are gg. Hyphomicrobium, Methylococcus, Nitrobacter, Pseudomonas and Sphingomonas (Proteobacteria), Bacillus and Clostridium (Firmicutes), Rhodococcus and Streptomyces (Actinobacteria). There were found differences peculiar to the taxonomic structure of each microbial complex. The rhizosphere is dominated by Actinobacteria while in inner tissues Proteobacteria are prevalent. The bacteria of gg. Ochrobactrum, Xanthomonas, Butyrivibrio, Corynebacterium, Mycobacterium, Propionibacterium, Sphingobacterium and specific iron reducers were shown to belong to rhizosphere community. Genera of Agrobacterium and Bifidobacterium were found only in the endophytic microbiota of the young tuber while g. Aeromonas
文摘Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha-pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations ofα- pinene to D. valens and the three most frequently isolated yeasts and bacteria ofD. valens, and further assayed microorganisms' capabilities to degrade α-pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α-pinene applied in media compared to controls. The tolerance of experimental microorganisms to α-pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%-50% of α-pinene compared to controls in 24 h in vitro. The microorganisms capable of α-pinene degradation in vitro and their tolerance to high levels ofα-pinene suggested that D. valens- associated microorganisms may help both microorganisms and the bark beetle overcome host α-pinene defense.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0506303)the National Natural Science Foundation of China(Grant Nos.41706172,31625001&41376174)the Hainan Provincial Key R&D Program(Grant No.ZDYF2018108)
文摘Coral reefs have high primary productivity and are one of the most important ecosystems in the ocean. However, the health and stability of coral reefs are constantly threatened by climate change and human activities. The coral holobiont is a complex symbiosis between the coral animal, zooxanthellae, and the associated community of microorganisms including bacteria, archaea, viruses, etc. Coral-associated microorganisms are found to be important for the maintenance of coral health,and they are proposed to contribute to the acclimatization and adaptation of reef-building corals under rapid climate change. The coral-microbe interaction mediated by chemical signalling molecules is an important driving force for shaping the microbial communities. Herein, we summarize our current knowledge of the chemical signalling molecules involved in the interaction of the coral holobiont. Specifically, the cooperation and competition among microbes mediated by N-acyl homoserine lactones(AHLs), the interrelationship between microbes and hosts mediated by dimethylsulfoniopropionate(DMSP) and nitric oxide(NO), and the response of corals and microorganisms to reactive oxygen species(ROS) under environmental stresses are highlighted in this review. We further discuss the potential of manipulating the coral microbiome using signalling molecules to restore and protect coral reefs.
文摘Although they are the largest taxonomic group of animals, relatively few insects have been examined for symbiotic relationships with micro-organisms. However, this is rapidly changing because of the potential for examination of the natural insectmicrobe-lignocellulose interactions to provide insights for biofuel technology. Micro-organisms associated with lignocellulose-consuming insects often facilitate the digestion of the recalcitrant plant diet; therefore these microbial communities may be mined for novel lignocellulose-degrading microbes, or for robust and inexpensive biocatalysts necessary for economically feasible biofuel production from lignocellulose. These insect-microbe interactions are influenced by the ecosystem and specific lignocellulose diet, and appre- ciating the whole ecosystem-insect-microbiota-lignocellulose as a natural biorefinery provides a rich and diverse framework from which to design novel industrial processes. One such natural biorefinery, the Tipula abdominalis larvae in riparian ecosystems, is reviewed herein with applications for biochemical processes and overcoming challenges involved in conversion of lignocellulosic biomass to fuel ethanol. From the dense and diverse T. abdominalis larval hindgut microbial community, a cellulolytic bacterial isolate, 27C64, demonstrated enzymatic activity toward many model plant polymers and also produced a bacterial antibiotic. 27C64 was co-cultured with yeast in fermentation of pine to ethanol, which allowed for a 20% reduction of commercial enzyme. In this study, a micro-organism from a lignocellulose-consuming insect was successfully applied for improvement of biomass-to-biofuel technology.