In this paper, the methods developed by?[1] are used to analyze flowback data, which involves modeling flow both before and after the breakthrough of formation fluids. Despite the versatility of these techniques, achi...In this paper, the methods developed by?[1] are used to analyze flowback data, which involves modeling flow both before and after the breakthrough of formation fluids. Despite the versatility of these techniques, achieving an optimal combination of parameters is often difficult with a single deterministic analysis. Because of the uncertainty in key model parameters, this problem is an ideal candidate for uncertainty quantification and advanced assisted history-matching techniques, including Monte Carlo (MC) simulation and genetic algorithms (GAs) amongst others. MC simulation, for example, can be used for both the purpose of assisted history-matching and uncertainty quantification of key fracture parameters. In this work, several techniques are tested including both single-objective (SO) and multi-objective (MO) algorithms for history-matching and uncertainty quantification, using a light tight oil (LTO) field case. The results of this analysis suggest that many different algorithms can be used to achieve similar optimization results, making these viable methods for developing an optimal set of key uncertain fracture parameters. An indication of uncertainty can also be achieved, which assists in understanding the range of parameters which can be used to successfully match the flowback data.展开更多
Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of S...Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.展开更多
文摘In this paper, the methods developed by?[1] are used to analyze flowback data, which involves modeling flow both before and after the breakthrough of formation fluids. Despite the versatility of these techniques, achieving an optimal combination of parameters is often difficult with a single deterministic analysis. Because of the uncertainty in key model parameters, this problem is an ideal candidate for uncertainty quantification and advanced assisted history-matching techniques, including Monte Carlo (MC) simulation and genetic algorithms (GAs) amongst others. MC simulation, for example, can be used for both the purpose of assisted history-matching and uncertainty quantification of key fracture parameters. In this work, several techniques are tested including both single-objective (SO) and multi-objective (MO) algorithms for history-matching and uncertainty quantification, using a light tight oil (LTO) field case. The results of this analysis suggest that many different algorithms can be used to achieve similar optimization results, making these viable methods for developing an optimal set of key uncertain fracture parameters. An indication of uncertainty can also be achieved, which assists in understanding the range of parameters which can be used to successfully match the flowback data.
文摘Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.