为解决推荐系统中数据稀疏造成的用户冷启动问题,文中提出了一种基于方面级用户偏好迁移的跨领域推荐算法(Cross-Domain Recommendation via Review Aspect-Level User Preference Transfer, CAUT),设计了基于两阶段生成对抗网络的用户...为解决推荐系统中数据稀疏造成的用户冷启动问题,文中提出了一种基于方面级用户偏好迁移的跨领域推荐算法(Cross-Domain Recommendation via Review Aspect-Level User Preference Transfer, CAUT),设计了基于两阶段生成对抗网络的用户方面级偏好跨领域迁移结构,通过用户历史评论挖掘用户细粒度方面级偏好。CAUT利用预训练源领域编码器参数对目标领域编码器进行参数初始化,在固定源领域编码器参数的同时引入领域鉴别器,以解决源领域与目标领域数据分布差异的问题,进而可以有效利用源领域的丰富数据,缓解目标领域数据稀疏造成的用户冷启动问题。在亚马逊电商平台真实数据集上进行了实验,结果表明,与最新算法相比,CAUT在用户对商品的评分预测均方根误差(RMSE)指标上有明显的提升,说明CAUT可有效缓解用户冷启动问题。展开更多
文摘为解决推荐系统中数据稀疏造成的用户冷启动问题,文中提出了一种基于方面级用户偏好迁移的跨领域推荐算法(Cross-Domain Recommendation via Review Aspect-Level User Preference Transfer, CAUT),设计了基于两阶段生成对抗网络的用户方面级偏好跨领域迁移结构,通过用户历史评论挖掘用户细粒度方面级偏好。CAUT利用预训练源领域编码器参数对目标领域编码器进行参数初始化,在固定源领域编码器参数的同时引入领域鉴别器,以解决源领域与目标领域数据分布差异的问题,进而可以有效利用源领域的丰富数据,缓解目标领域数据稀疏造成的用户冷启动问题。在亚马逊电商平台真实数据集上进行了实验,结果表明,与最新算法相比,CAUT在用户对商品的评分预测均方根误差(RMSE)指标上有明显的提升,说明CAUT可有效缓解用户冷启动问题。