Surface photovoltage spectroscopy equations for cathode materials with an AlxGa1-xAs buffer layer are determined in order to effectively measure the body parameters for transmission-mode (t-mode) photocathode materi...Surface photovoltage spectroscopy equations for cathode materials with an AlxGa1-xAs buffer layer are determined in order to effectively measure the body parameters for transmission-mode (t-mode) photocathode materials before Cs-O activation. Body parameters of cathode materials are well fitted through experiments and fitting calculations for the designed AlxGa1-xAs/GaAs structure material. This investigation examines photo-excited performance and measurements of body parameters for t-mode cathode materials of different doping structures. It also helps study various doping structures and optimize structure designs in the future.展开更多
Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission elec...Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), atomic force microscopy(AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In_(0.82)Ga_(0.18)As/InP heterostructure, the In_xGa_(1-x)As buffer layer was grown. The residual strain of the In_(0.82)Ga_(0.18)As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium(In) content In_(0.82)Ga_(0.18)As epitaxial layer has significant influence on the carrier concentration.展开更多
基金supported by the General Administra-tion for Quality Supervision of China(No.2008QK328)the Zhejiang Provincial Natural Science Foundation of China(No.Y5090150)
文摘Surface photovoltage spectroscopy equations for cathode materials with an AlxGa1-xAs buffer layer are determined in order to effectively measure the body parameters for transmission-mode (t-mode) photocathode materials before Cs-O activation. Body parameters of cathode materials are well fitted through experiments and fitting calculations for the designed AlxGa1-xAs/GaAs structure material. This investigation examines photo-excited performance and measurements of body parameters for t-mode cathode materials of different doping structures. It also helps study various doping structures and optimize structure designs in the future.
基金supported by the National Key Basic Research Program of China(No.2012CB619200)the National Natural Science Foundation of China(No.61474053)+1 种基金the State Key Laboratory for Mechanical Behavior of Materials of Xi'an Jiaotong University(No.20161806)the Natural Science Basic Research Open Foundation of the Key Lab of Automobile Materials,Ministry of Education,Jilin University(No.1018320144001)
文摘Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), atomic force microscopy(AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In_(0.82)Ga_(0.18)As/InP heterostructure, the In_xGa_(1-x)As buffer layer was grown. The residual strain of the In_(0.82)Ga_(0.18)As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium(In) content In_(0.82)Ga_(0.18)As epitaxial layer has significant influence on the carrier concentration.