Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithi...Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1(PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases(SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency(99.7%),excellent cyclability(80%capacity retention rate after 600 cycles at 1 C),and superior rate capability(125.3 m Ah g-1 at 10 C).Electrochemical impedance spectrum(EIS)showed that the PIM-1 membrane could lower the diffusion rate of Li+significantly and change the rate-determining step from charge transfer to Li+diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI.展开更多
固态电解质界面膜(SEI)的性质直接影响着锂金属电池中金属锂负极的稳定性。本文通过原位紫外光聚合方法构筑了弹性聚合物人工固态电解质界面膜(EP-SEI)保护的金属锂负极。这种EP-SEI具有优异的均匀性、稳定性和弹性,在电池循环中促进锂...固态电解质界面膜(SEI)的性质直接影响着锂金属电池中金属锂负极的稳定性。本文通过原位紫外光聚合方法构筑了弹性聚合物人工固态电解质界面膜(EP-SEI)保护的金属锂负极。这种EP-SEI具有优异的均匀性、稳定性和弹性,在电池循环中促进锂离子均匀沉积。这些特性可以抑制锂枝晶的生成,缓冲金属锂负极在循环时的体积变化,有效保护金属锂负极。这种EP-SEI保护的金属锂负极组装的LFP||Li电池和NCM811||Li电池在0.5 C倍率下的最高容量分别可达到164.1 m A·h·g^(-1)和187.1 m A·h·g^(-1),并稳定循环500圈。展开更多
High chemical reactivity, large volume changes, and uncontrollable lithium dendrite growth have always been the key problems of lithium metal anodes.Coating has been demonstrated as an effective strategy to protect th...High chemical reactivity, large volume changes, and uncontrollable lithium dendrite growth have always been the key problems of lithium metal anodes.Coating has been demonstrated as an effective strategy to protect the lithium metal.In this work, the effects of polyacrylonitrile(PAN)-based coatings on electrodeposited lithium have been studied.Our results show that a PAN coating layer provides uniform and dendrite-free lithium deposition as well as better cycling performance with carbonate electrolyte.Notably, heat treatment of the PAN coating layer promotes the formation of larger deposit particle size and higher coulombic efficiency(85%).The compact coating layer of heat-treated PAN with a large Young modulus(82.7 GPa) may provide stable protection for the active lithium.Improved homogeneity of morphology and mechanical properties of heat-treated PAN contribute to the larger deposit particles.This work provides new feasibility to optimize the polymer coating through rational modification of polymers.展开更多
基金supported by the Opening Project(SKLACPS-C-21)of the State Key Laboratory of Advanced Chemical Power Source,Guizhou Meiling Power Sources Co.,Ltd.the Program for Innovative and Entrepreneurial team in Zhuhai(ZH01110405160007PWC).
文摘Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1(PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases(SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency(99.7%),excellent cyclability(80%capacity retention rate after 600 cycles at 1 C),and superior rate capability(125.3 m Ah g-1 at 10 C).Electrochemical impedance spectrum(EIS)showed that the PIM-1 membrane could lower the diffusion rate of Li+significantly and change the rate-determining step from charge transfer to Li+diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI.
文摘固态电解质界面膜(SEI)的性质直接影响着锂金属电池中金属锂负极的稳定性。本文通过原位紫外光聚合方法构筑了弹性聚合物人工固态电解质界面膜(EP-SEI)保护的金属锂负极。这种EP-SEI具有优异的均匀性、稳定性和弹性,在电池循环中促进锂离子均匀沉积。这些特性可以抑制锂枝晶的生成,缓冲金属锂负极在循环时的体积变化,有效保护金属锂负极。这种EP-SEI保护的金属锂负极组装的LFP||Li电池和NCM811||Li电池在0.5 C倍率下的最高容量分别可达到164.1 m A·h·g^(-1)和187.1 m A·h·g^(-1),并稳定循环500圈。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51822211 and 51802342)the State Grid Technology Project,China(Grant No.DG71-17-010)
文摘High chemical reactivity, large volume changes, and uncontrollable lithium dendrite growth have always been the key problems of lithium metal anodes.Coating has been demonstrated as an effective strategy to protect the lithium metal.In this work, the effects of polyacrylonitrile(PAN)-based coatings on electrodeposited lithium have been studied.Our results show that a PAN coating layer provides uniform and dendrite-free lithium deposition as well as better cycling performance with carbonate electrolyte.Notably, heat treatment of the PAN coating layer promotes the formation of larger deposit particle size and higher coulombic efficiency(85%).The compact coating layer of heat-treated PAN with a large Young modulus(82.7 GPa) may provide stable protection for the active lithium.Improved homogeneity of morphology and mechanical properties of heat-treated PAN contribute to the larger deposit particles.This work provides new feasibility to optimize the polymer coating through rational modification of polymers.