Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery prob展开更多
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model...The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input展开更多
In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed...In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values.展开更多
Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward ba...Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.展开更多
A wideband rectangular patch antenna resonat- ing at 3.5 GHz and 8 GHz frequencies is developed on a flexible substrate, which can be used for wearable applications. The proposed antenna gives a wide impe- dance bandw...A wideband rectangular patch antenna resonat- ing at 3.5 GHz and 8 GHz frequencies is developed on a flexible substrate, which can be used for wearable applications. The proposed antenna gives a wide impe- dance bandwidth of 116%, operating from 2.SGHz to 9.5 GHz, covering most of the ultra-wideband (UWB) operating frequency range. A two-element multiple-input multiple-output (MIMO) system is developed using the proposed antenna, and the mutual coupling between the two antennas for various separations and frequencies is analyzed by using artificial neural networks (ANNs). The neural structure is trained by using different ANN algorithms and a comparative study is made between them. It is shown that, quasi-Newton (QN) and quasi- Newton multi layer perceptron (QN-MLP) algorithms are better in terms of training, testing errors, and correlation coefficient.展开更多
针对物联网普适定位系统中链路选择需满足多限制条件的要求,提出了一种基于多约束条件反馈的QoS(Quality of Service)链路选择算法。利用无线通信广播特性,将多约束服务质量路由问题转化成满足链路长度、带宽、时延、时延抖动、丢包率...针对物联网普适定位系统中链路选择需满足多限制条件的要求,提出了一种基于多约束条件反馈的QoS(Quality of Service)链路选择算法。利用无线通信广播特性,将多约束服务质量路由问题转化成满足链路长度、带宽、时延、时延抖动、丢包率和费用等约束条件的最小代价问题。建立了物联网多跳自主链路模型并定义了目标能量函数,利用Hopfield神经网络模型的并行思想将多项约束条件转换为多项式求极值问题。该算法在不改变系统链路选择策略的前提下,避免了选择大量参数的问题,实现了链路自动选择,满足了通信实时快速的要求。展开更多
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery prob
文摘The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input
文摘In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values.
文摘Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.
文摘A wideband rectangular patch antenna resonat- ing at 3.5 GHz and 8 GHz frequencies is developed on a flexible substrate, which can be used for wearable applications. The proposed antenna gives a wide impe- dance bandwidth of 116%, operating from 2.SGHz to 9.5 GHz, covering most of the ultra-wideband (UWB) operating frequency range. A two-element multiple-input multiple-output (MIMO) system is developed using the proposed antenna, and the mutual coupling between the two antennas for various separations and frequencies is analyzed by using artificial neural networks (ANNs). The neural structure is trained by using different ANN algorithms and a comparative study is made between them. It is shown that, quasi-Newton (QN) and quasi- Newton multi layer perceptron (QN-MLP) algorithms are better in terms of training, testing errors, and correlation coefficient.
文摘针对物联网普适定位系统中链路选择需满足多限制条件的要求,提出了一种基于多约束条件反馈的QoS(Quality of Service)链路选择算法。利用无线通信广播特性,将多约束服务质量路由问题转化成满足链路长度、带宽、时延、时延抖动、丢包率和费用等约束条件的最小代价问题。建立了物联网多跳自主链路模型并定义了目标能量函数,利用Hopfield神经网络模型的并行思想将多项约束条件转换为多项式求极值问题。该算法在不改变系统链路选择策略的前提下,避免了选择大量参数的问题,实现了链路自动选择,满足了通信实时快速的要求。