The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o...The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.Howev展开更多
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec...Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.展开更多
基金“十一五”国家科技支撑计划项目“农田水分生产潜力及适度开发研究”(2006BAD29B01)“十一五”国家863项目“山西半干旱区现代节水农业技术研究与集成”(2006AA100220)+2 种基金“十一五”国家科技基础性工作专项项目(2007FY120100)Challenge Programon Water & Food“Conservation agriculture for the dry-land areas of the Yellow River Basin”农业部“保护性耕作对地力及作物生长影响的机理研究”项目
基金This work was funded by the National Natural Science Foundation of China(U1603242)the Major Science and Technology Projects in Inner Mongolia,China(ZDZX2018054).
文摘The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.Howev
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
文摘Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.