This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposit...This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*展开更多
The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical ...The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical proxies for these historical shifts in the redox conditions and to trace the ancient sedimentation patterns and protoliths.In this study,we investigate the proto-ore of the Archean Mn-formations of the Sandur,Chitradurga and Shimoga greenstone belts of Dharwar Craton of southern Peninsular India,which is geochemically characterised as quartz arenites,Mn-arenites,Fe-arenites,Mn-argillites and Fe-argillites.The geochemical systematics suggest their deposition in shallow to deeper shelf in the Archean proto-ocean.The detrital zircon U-Pb systematics of Mn arenites and argillites indicate their maximum depositional age of 3230±52 Ma representing the oldest onset of sedimentation during the Paleo-Mesoarchean timeframe in the Chitradurga Group of Dharwar Supergroup.The detrital influx proxies suggest variations in sedimentation rates associated with the Archean transgressive-regressive cycles and fluctuating hydrodynamic conditions,together reflecting an increasing trend in the contributions of recycled sediment from Sandur to Chitradurga and Shimoga greenstone belts.The available detrital zircon ages of the Mn arenites and argillites from these greenstone belts indicate a~600 Ma prolonged period of Mn deposition for which high-T hydrothermal fluids from Archean mid-oceanic ridges supplied the manganese.The trace element compositions of the concordant detrital zircons suggest 3.3-3.1 Ga Dharwar basement TTG/granitoid source which is corroborated by the zircon crystallization temperatures of 690-820℃.The source-normalisedα-dose rates of the detrital zircons signify greater degrees of sediment transport and multi-cycle nature which correspond to the earliest episode of crustal growth in the Indian sub-continent associated with the Mesoarchean Ur supercontinent.The clastic-chemogenic sedimentation attain展开更多
文摘This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*
文摘The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical proxies for these historical shifts in the redox conditions and to trace the ancient sedimentation patterns and protoliths.In this study,we investigate the proto-ore of the Archean Mn-formations of the Sandur,Chitradurga and Shimoga greenstone belts of Dharwar Craton of southern Peninsular India,which is geochemically characterised as quartz arenites,Mn-arenites,Fe-arenites,Mn-argillites and Fe-argillites.The geochemical systematics suggest their deposition in shallow to deeper shelf in the Archean proto-ocean.The detrital zircon U-Pb systematics of Mn arenites and argillites indicate their maximum depositional age of 3230±52 Ma representing the oldest onset of sedimentation during the Paleo-Mesoarchean timeframe in the Chitradurga Group of Dharwar Supergroup.The detrital influx proxies suggest variations in sedimentation rates associated with the Archean transgressive-regressive cycles and fluctuating hydrodynamic conditions,together reflecting an increasing trend in the contributions of recycled sediment from Sandur to Chitradurga and Shimoga greenstone belts.The available detrital zircon ages of the Mn arenites and argillites from these greenstone belts indicate a~600 Ma prolonged period of Mn deposition for which high-T hydrothermal fluids from Archean mid-oceanic ridges supplied the manganese.The trace element compositions of the concordant detrital zircons suggest 3.3-3.1 Ga Dharwar basement TTG/granitoid source which is corroborated by the zircon crystallization temperatures of 690-820℃.The source-normalisedα-dose rates of the detrital zircons signify greater degrees of sediment transport and multi-cycle nature which correspond to the earliest episode of crustal growth in the Indian sub-continent associated with the Mesoarchean Ur supercontinent.The clastic-chemogenic sedimentation attain