The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic vol- canics show weak correlation between HFSE and TiO2. The...The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic vol- canics show weak correlation between HFSE and TiO2. Their superchondritic Nb/Ta ratio (18.8±1.2) could be attributed to partial melting of mantle peridotite in the presence of garnet. Compared with Neoarchean mafic volcanics, the Paleoproterozoic ones have higher HFSE contents and lower Nb/Ta ratio (15.6±2.9). The significantly elevated HFSE and REE contents of Paleoproterozoic mafic volcanics imply metasomatic enrichment of mantle source, in which Ti-rich silicates could be present as suggested by significant positive correlations between TiO2 and HFSE. The global database of Precambrian mafic volcanics shows a similar A-P boundary. 23 Archean mafic volcanic suites yield an average Nb/Ta ratio of 17.8±1.9 higher than or close to the PM value; Proterozoic mafic volcanics from 28 suites yield an average Nb/Ta ratio of 14.7±4.1 close to the bulk continental crust (BCC) value (11―17.5). Thus, we suggest that the Nb/Ta deficit could be mainly formed in post-Archean time. Archean mafic volcanics could be one of the geochemical reservoirs complementing the low Nb/Ta of the post-Archean continental crust and DM.展开更多
The structural mapping and section study indicate that the “greenstone belts” in the southern to central parts of Hengshan were intensively sheared and transposed mafic dyke swarm, which originally intruded into the...The structural mapping and section study indicate that the “greenstone belts” in the southern to central parts of Hengshan were intensively sheared and transposed mafic dyke swarm, which originally intruded into the Neoarchean grey gneiss and high-pressure granulite terrain (HPGT). The HPGT is characterized by flat-dipping structures, to the south it became steep and was cut by the Dianmen mafic dyke swarm. After high-pressure granulite-facies metamorphic event, the mafic dyke swarm occurred, and was associated with the extensional setting and reworked by the late strike-slip shearing. The zircon age dating proves that the Dianmen mafic dyke swarm was emplaced during the period between 2499±4 Ma and 2512±3 Ma, followed by late tectonothermal reworking. The Dianmen mafic dyke swarm further documents the extensional episode in the central to northern parts of North China Craton (NCC), providing the important constraint for the limit between Archean and Proterozoic and correlation between NCC and other cratonic blocks of the world.展开更多
Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriche...Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriched in most of the high field strength elements (HFSE) compared with Archean ones. Nb, Ta and Th show a distinct sequence of incompatibility in Archean and Proterozoic. The Cenozoic basalts are enriched in HFSE and Ni and their REEs are strongly differentiated with positive Eu anomalies ( δ (Eu)=1.14). The Ar Pt boundary could be related to change in oxygen fugacity and requires an increasing importance of enriched mantle source. The geochemistry of Cenozoic basalts implies a mantle source similar to OIB. Residuum from subducting partial melting of old basaltic oceanic crust and continental crust is likely to contribute to the formation of the enriched mantle.展开更多
基金the National Natural Science Foundat ion of China(Grant Nos.40003004 , 40133020).
文摘The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic vol- canics show weak correlation between HFSE and TiO2. Their superchondritic Nb/Ta ratio (18.8±1.2) could be attributed to partial melting of mantle peridotite in the presence of garnet. Compared with Neoarchean mafic volcanics, the Paleoproterozoic ones have higher HFSE contents and lower Nb/Ta ratio (15.6±2.9). The significantly elevated HFSE and REE contents of Paleoproterozoic mafic volcanics imply metasomatic enrichment of mantle source, in which Ti-rich silicates could be present as suggested by significant positive correlations between TiO2 and HFSE. The global database of Precambrian mafic volcanics shows a similar A-P boundary. 23 Archean mafic volcanic suites yield an average Nb/Ta ratio of 17.8±1.9 higher than or close to the PM value; Proterozoic mafic volcanics from 28 suites yield an average Nb/Ta ratio of 14.7±4.1 close to the bulk continental crust (BCC) value (11―17.5). Thus, we suggest that the Nb/Ta deficit could be mainly formed in post-Archean time. Archean mafic volcanics could be one of the geochemical reservoirs complementing the low Nb/Ta of the post-Archean continental crust and DM.
文摘The structural mapping and section study indicate that the “greenstone belts” in the southern to central parts of Hengshan were intensively sheared and transposed mafic dyke swarm, which originally intruded into the Neoarchean grey gneiss and high-pressure granulite terrain (HPGT). The HPGT is characterized by flat-dipping structures, to the south it became steep and was cut by the Dianmen mafic dyke swarm. After high-pressure granulite-facies metamorphic event, the mafic dyke swarm occurred, and was associated with the extensional setting and reworked by the late strike-slip shearing. The zircon age dating proves that the Dianmen mafic dyke swarm was emplaced during the period between 2499±4 Ma and 2512±3 Ma, followed by late tectonothermal reworking. The Dianmen mafic dyke swarm further documents the extensional episode in the central to northern parts of North China Craton (NCC), providing the important constraint for the limit between Archean and Proterozoic and correlation between NCC and other cratonic blocks of the world.
文摘Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriched in most of the high field strength elements (HFSE) compared with Archean ones. Nb, Ta and Th show a distinct sequence of incompatibility in Archean and Proterozoic. The Cenozoic basalts are enriched in HFSE and Ni and their REEs are strongly differentiated with positive Eu anomalies ( δ (Eu)=1.14). The Ar Pt boundary could be related to change in oxygen fugacity and requires an increasing importance of enriched mantle source. The geochemistry of Cenozoic basalts implies a mantle source similar to OIB. Residuum from subducting partial melting of old basaltic oceanic crust and continental crust is likely to contribute to the formation of the enriched mantle.