Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-interme- diate basic igne...Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-interme- diate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian.展开更多
The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock g...The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock geochemical, and in-situ zircon Hf isotope analyses for igneous rocks in the large Naruo deposit(2.51 Mt of Cu and 82 t of Au) which is located ~2 km NE of the Duolong(Duobuza and Bolong) super-large gold-rich porphyry copper deposit. We integrated our results with previous research of other porphyry deposits in the Duolong area and have identified the timing, geodynamic setting, and petrogenesis of the mineralization-associated magmatic events. Based on the measurements, the Duolong area porphyry Cu(Au) deposit formations are associated with Early Cretaceous intermediate-felsic magmatism, which is consistent with U-Pb zircon ages of 120 Ma. All the main intrusive rocks in the ore-concentrated area have similar lithogeochemical characteristics; they show a relative enrichment in both light rare earth elements(LREEs) and large-ion lithophile elements(LILEs: Rb, Ba, K, etc.) and relative depletion in both heavy rare earth elements(HREEs) and high field strength elements(HFSEs: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38–7.37 suggesting that magmas were potentially derived from the partial melting of a depleted mantle wedge that had been metasomatized by subducted slab-derived fluids or melts. This paper points out that the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area was dominated by northward subduction of the Bangongco Tethys Plate beneath the Qiangtang block in the Early Cretaceous(124–114 Ma), when the subducted oceanic crust reached 50–70 km underground and generated different degrees of phase transformation, which lead to a melt produced by dehydration of amphibole minerals, a metasomatized mantle wedge, and induced mantle partial melting that produced the magma. Thos展开更多
为研究列车升弓过程弓网电弧的外在形态特性,基于弓网电弧试验系统和高速COMS(complementary metal oxide semiconductor)相机图像采集系统采集了弓网电弧图像,分析了弓网电弧燃烧过程的运动机理,并利用数字图像处理技术对图像进行了图...为研究列车升弓过程弓网电弧的外在形态特性,基于弓网电弧试验系统和高速COMS(complementary metal oxide semiconductor)相机图像采集系统采集了弓网电弧图像,分析了弓网电弧燃烧过程的运动机理,并利用数字图像处理技术对图像进行了图像增强、边缘检测、灰度等值线绘制等处理,进而又计算了电弧面积,分析了输入电流对电弧面积的影响。结果表明:静态弓网燃弧过程一般经历触发—扩散—稳定燃弧—再次扩散—熄弧5个阶段,形貌呈椭圆形;图像增强、边缘检测和灰度等值线绘制分别对弓网电弧实现了能量辐射范围的显示、局部形态的精确提取和温度梯度与等离子体密度梯度的描述;电弧面积随输入电流的增大而显著增大,但并不与电流的二次方成正比;输入电流越大,电弧达到稳定燃烧所需时间越短。以上结论为进一步研究高速铁路弓网电弧外部形态特性和内部等离子体参数提供了理论基础。展开更多
Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key ...Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key areas to understand the global tectonics and also one of gigantic metallogenic provinces in China and even in the world . Volcanism had occurred during the period of time from Proterozoic to Cenozoic . The most important and active periods of volcanism , however , are Carboniferous , Permian and Triassic . The pattern of spatial distribution of Sanjiang volcanic rocks and ophiolites can essentially be described as that several intra - continental micro-massif volcanic districts are respectively sandwiched between each two of four coupling ophioh'te - arc volcanic belts , which are successively from west to east : Dingqing - Nujiang belt , Lancangjiang belt , Jinshajiang belt and Ganzi-Litang belt . Four tectono - magma tic types of volcanic rocks have been rec-ognized in Sanjiang area as follows: mid -ocean- ridge/ para - mid - ocean - ridge type , arc type , collision type and intra - continent type . The petrotectonic assemblages within suture zones , such as oceanic assemblage , subduction - related assemblage , collision - related assemblage etc ., have been paid more attention to because of their significant importance in reconstruction of the history of Sanjiang Tethyan orogenic belt and plate tectonics .Couph'ng ophiolite - arc volcanic belt, para-mid - ocean - ridge volcanism and volcanic rocks, post -collision arc volcanism and volcanic rocks and tensional volcanic arc are newly defined in the present work . These new facts and concepts will be greatly beneficial to understanding the history of Sanjiang Tethyan plate tectonics and the complexity of the volcanism in orogenic belts and of the evolution of the continental lithosphere . A preliminary model of the evolution of Sanjiang Tethys under petrotectonic constraints was presented . It consists of the following four successive stages : (1)展开更多
The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we...The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U-Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U-Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age(268.7 ± 2.3 Ma) for the Xierzi pluton that is dominated by biotite monzogranites with high SiO_2(71.2-72.8 wt.%),alkali(Na_2 O + K_2 O =8.05-8.44 wt.%), Al_2 O_3(14.4-15.2 wt.%) and Fe_2 O_3~T relative to low MgO contents, yielding Fe_2 O_3~T/MgO ratios of 2.87-3.44, and plotting within the high-K calc-alkaline field on a SiO_2 vs. K_2 O diagram. The aluminum saturation indexes(A/CNK) of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements(REE), high field strength elements(HFSEs; Zr,Hf). and large ion lithophile elements(LILEs; Rb, U, Th). The LREEs are enriched relative to the HREEs,with a distinct negative Eu anomaly in a chondrite-normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon ε_(Hf)(t) values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust.Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc-continent collision in the middle Permian.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40234041 and 40572121), the Ministry of Education of China (Grant No. 104175) and China Geological Survey (Grant No. 200013000154)
文摘Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-interme- diate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian.
基金jointly supported by Public Science and Technology Research Funds Projects (201511017)
文摘The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock geochemical, and in-situ zircon Hf isotope analyses for igneous rocks in the large Naruo deposit(2.51 Mt of Cu and 82 t of Au) which is located ~2 km NE of the Duolong(Duobuza and Bolong) super-large gold-rich porphyry copper deposit. We integrated our results with previous research of other porphyry deposits in the Duolong area and have identified the timing, geodynamic setting, and petrogenesis of the mineralization-associated magmatic events. Based on the measurements, the Duolong area porphyry Cu(Au) deposit formations are associated with Early Cretaceous intermediate-felsic magmatism, which is consistent with U-Pb zircon ages of 120 Ma. All the main intrusive rocks in the ore-concentrated area have similar lithogeochemical characteristics; they show a relative enrichment in both light rare earth elements(LREEs) and large-ion lithophile elements(LILEs: Rb, Ba, K, etc.) and relative depletion in both heavy rare earth elements(HREEs) and high field strength elements(HFSEs: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38–7.37 suggesting that magmas were potentially derived from the partial melting of a depleted mantle wedge that had been metasomatized by subducted slab-derived fluids or melts. This paper points out that the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area was dominated by northward subduction of the Bangongco Tethys Plate beneath the Qiangtang block in the Early Cretaceous(124–114 Ma), when the subducted oceanic crust reached 50–70 km underground and generated different degrees of phase transformation, which lead to a melt produced by dehydration of amphibole minerals, a metasomatized mantle wedge, and induced mantle partial melting that produced the magma. Thos
文摘为研究列车升弓过程弓网电弧的外在形态特性,基于弓网电弧试验系统和高速COMS(complementary metal oxide semiconductor)相机图像采集系统采集了弓网电弧图像,分析了弓网电弧燃烧过程的运动机理,并利用数字图像处理技术对图像进行了图像增强、边缘检测、灰度等值线绘制等处理,进而又计算了电弧面积,分析了输入电流对电弧面积的影响。结果表明:静态弓网燃弧过程一般经历触发—扩散—稳定燃弧—再次扩散—熄弧5个阶段,形貌呈椭圆形;图像增强、边缘检测和灰度等值线绘制分别对弓网电弧实现了能量辐射范围的显示、局部形态的精确提取和温度梯度与等离子体密度梯度的描述;电弧面积随输入电流的增大而显著增大,但并不与电流的二次方成正比;输入电流越大,电弧达到稳定燃烧所需时间越短。以上结论为进一步研究高速铁路弓网电弧外部形态特性和内部等离子体参数提供了理论基础。
文摘Sanjiang area in Southwestern China is tectonically situated at the east end of Himalaya-Tethys tectonic domain and at the conjunction of Tethyan Mountain Chain and Circum-Pacific Mountain Chain. It is one of the key areas to understand the global tectonics and also one of gigantic metallogenic provinces in China and even in the world . Volcanism had occurred during the period of time from Proterozoic to Cenozoic . The most important and active periods of volcanism , however , are Carboniferous , Permian and Triassic . The pattern of spatial distribution of Sanjiang volcanic rocks and ophiolites can essentially be described as that several intra - continental micro-massif volcanic districts are respectively sandwiched between each two of four coupling ophioh'te - arc volcanic belts , which are successively from west to east : Dingqing - Nujiang belt , Lancangjiang belt , Jinshajiang belt and Ganzi-Litang belt . Four tectono - magma tic types of volcanic rocks have been rec-ognized in Sanjiang area as follows: mid -ocean- ridge/ para - mid - ocean - ridge type , arc type , collision type and intra - continent type . The petrotectonic assemblages within suture zones , such as oceanic assemblage , subduction - related assemblage , collision - related assemblage etc ., have been paid more attention to because of their significant importance in reconstruction of the history of Sanjiang Tethyan orogenic belt and plate tectonics .Couph'ng ophiolite - arc volcanic belt, para-mid - ocean - ridge volcanism and volcanic rocks, post -collision arc volcanism and volcanic rocks and tensional volcanic arc are newly defined in the present work . These new facts and concepts will be greatly beneficial to understanding the history of Sanjiang Tethyan plate tectonics and the complexity of the volcanism in orogenic belts and of the evolution of the continental lithosphere . A preliminary model of the evolution of Sanjiang Tethys under petrotectonic constraints was presented . It consists of the following four successive stages : (1)
基金financially supported by the 973 Program(Grant No.2013CB429802)the Natural Science Foundation of China(Grant Nos.41272223,41340024 and 41602209)
文摘The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U-Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U-Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age(268.7 ± 2.3 Ma) for the Xierzi pluton that is dominated by biotite monzogranites with high SiO_2(71.2-72.8 wt.%),alkali(Na_2 O + K_2 O =8.05-8.44 wt.%), Al_2 O_3(14.4-15.2 wt.%) and Fe_2 O_3~T relative to low MgO contents, yielding Fe_2 O_3~T/MgO ratios of 2.87-3.44, and plotting within the high-K calc-alkaline field on a SiO_2 vs. K_2 O diagram. The aluminum saturation indexes(A/CNK) of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements(REE), high field strength elements(HFSEs; Zr,Hf). and large ion lithophile elements(LILEs; Rb, U, Th). The LREEs are enriched relative to the HREEs,with a distinct negative Eu anomaly in a chondrite-normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon ε_(Hf)(t) values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust.Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc-continent collision in the middle Permian.