Using the NCEP/ NCAR reanalysis dataset covering a 40-year period from January 1958 to December 1997, sea surface temperature (1950-1992), and monthly sea-ice concentration dataset for the period from 1953 to 1995, we...Using the NCEP/ NCAR reanalysis dataset covering a 40-year period from January 1958 to December 1997, sea surface temperature (1950-1992), and monthly sea-ice concentration dataset for the period from 1953 to 1995, we investigate connections between winter Arctic Oscillation (AO) and Siberian high (SH), the East Asian winter monsoon (EAWM), and winter sea-ice extent in the Barents Sea. The results indicate that winter AO not only influences climate variations in the Arctic and the North Atlantic sector, but also shows possible effects on winter SH, and further influences EAWM, When winter AO is in its positive phase, both of winter SH and the EAWM are weaker than normal, and air temperature from near the surface to the middle troposphere is about 0.5-2degreesC higher than normal in the southeastern Siberia and the East Asian coast, including eastern China, Korea, and Japan. When AO reaches its negative phase, an opposite scenario can be observed. The results also indicate that winter SH has no significant effects on climate variations in Arctic and the North Atlantic sector. Its influence intensity and extent are obviously weaker than AO, exhibiting a 'local, feature in contrast to AO. This study further reveals the possible mechanism of how the winter AO is related to winter SH. It is found that winter SH variation is closely related to both dynamic processes and air temperature variations from the surface to the middle troposphere. The western SH variation mainly depends on dynamic processes, while its eastern part is more closely related to air temperature variation. The maintaining of winter SH mainly depends on downward motion of airflow of the nearly entire troposphere. The airflow originates from the North Atlantic sector, whose variation is influenced by the AO. When AO is in its positive (negative) phase, downward motion remarkably weakened (strengthened), which further influences winter SH. In addition, winter AO exhibits significant influences on the simultaneous sea-ice extent in the Barents Sea.展开更多
Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and E1 Nifio-Southern Oscillation (ENSO) were investigate...Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and E1 Nifio-Southern Oscillation (ENSO) were investigated using an updated temperature dataset comprising 542 Chinese stations during the period 1961- 2011. Results showed that the number of winter extreme warm (cold) days across EC experienced a significant increase (decrease) around the mid-1980s, which could be attributed to interdecadal variation of the East Asian Winter Monsoon (EAWM). Probability distribution functions (PDFs) of winter temperature extremes in different phases of the AO and ENSO were estimated based on Generalized Extreme Value Distribution theory. Correlation analysis and the PDF technique consistently demonstrated that interannual variation of winter extreme cold days in the northern part of EC (NEC) is closely linked to the AO, while it is most strongly related to the ENSO in the southern part (SEC). However, the number of winter extreme warm days across EC has little correlation with both AO and ENSO. Furthermore, results indicated that, whether before or after the mid-1980s shift, a significant connection existed between winter extreme cold days in NEC and the AO. However, a significant connection between winter extreme cold days in SEC and the ENSO was only found after the mid-1980s shift. These results highlight the different roles of the AO and ENSO in influencing winter temperature extremes in different parts of EC and in different periods, thus providing important clues for improving short-term climate prediction for winter temperature extremes.展开更多
With the warm/cold phases of the El Ni o and Southern Oscillation (ENSO) as a background, the impacts of monthly variation in the Arctic Oscillation (AO) on the winter climate anomalies in East Asia are studied with t...With the warm/cold phases of the El Ni o and Southern Oscillation (ENSO) as a background, the impacts of monthly variation in the Arctic Oscillation (AO) on the winter climate anomalies in East Asia are studied with the NCEP/DOE Reanalysis 2 data and the Chinese station data regarding temperature and rainfall. The combined effects of ENSO and the AO indicate that the winter climate anomalies are mainly influenced by the AO in northern China and the ENSO in southern China, when an El Ni o couples with a negative AO month or a La Ni a couples with a positive AO month. These climate anomalies in China are consistent with the mechanisms proposed in previous studies. However, most of China presents a different pattern of climate anomalies if an El Ni o couples with a positive AO month or a La Ni a couples with a negative AO month, with the exception of the temperature anomalies in northern China, which are still affected dominantly by the AO. Further analysis suggests that the causes are attributed to the differences in both the stratosphere-troposphere interaction and the extratropics-tropics interaction. In the former cases, zonal symmetric circulation prevails in the winter and the extratropics-tropics interaction is weakened. Thus, the influences of the ENSO and the AO on the East Asian climate mainly present linear combination effects. On the contrary, an annular mode of atmospheric circulation is not favored in the latter cases and the extratropics-tropics interaction is strong. Hence, the combined effects of the ENSO and the AO on the winter climate in East Asia present nonlinear characteristics.展开更多
The influence of spring AO on the summer rainfall along the Yangtze River is investigated. The long-term rainfall observations are filtered to remove the low-frequency variations longer than 10 years. The inter-annual...The influence of spring AO on the summer rainfall along the Yangtze River is investigated. The long-term rainfall observations are filtered to remove the low-frequency variations longer than 10 years. The inter-annual components show a high correlation to AO in the last hundred years. The strongest correlation appears for May AO and summer rainfall with a value of -0.39, significant above the 99% confidence level. Associated with one standard deviation stronger May AO index, the rainfall over the Yangtze River to the southern Japan decreases by about 3%-9%, while, at the same time increases by about 3%-6% in the northern China and far-eastern Russia. The coherent changes in rainfall are significantly related to the East Asian summer jet stream in the upper troposphere. When there is stronger AO in spring, the jet stream tends to move polarward in summer, and leads the rainfall-belt to move northward too. That gives rise to a drier condition in the Yangtze River valley, wetter anomalies in northern China.展开更多
基金the National Key Basic Research Program (Grant No.G 1998040900), the Frontier Research System for Global Change of Japan and the
文摘Using the NCEP/ NCAR reanalysis dataset covering a 40-year period from January 1958 to December 1997, sea surface temperature (1950-1992), and monthly sea-ice concentration dataset for the period from 1953 to 1995, we investigate connections between winter Arctic Oscillation (AO) and Siberian high (SH), the East Asian winter monsoon (EAWM), and winter sea-ice extent in the Barents Sea. The results indicate that winter AO not only influences climate variations in the Arctic and the North Atlantic sector, but also shows possible effects on winter SH, and further influences EAWM, When winter AO is in its positive phase, both of winter SH and the EAWM are weaker than normal, and air temperature from near the surface to the middle troposphere is about 0.5-2degreesC higher than normal in the southeastern Siberia and the East Asian coast, including eastern China, Korea, and Japan. When AO reaches its negative phase, an opposite scenario can be observed. The results also indicate that winter SH has no significant effects on climate variations in Arctic and the North Atlantic sector. Its influence intensity and extent are obviously weaker than AO, exhibiting a 'local, feature in contrast to AO. This study further reveals the possible mechanism of how the winter AO is related to winter SH. It is found that winter SH variation is closely related to both dynamic processes and air temperature variations from the surface to the middle troposphere. The western SH variation mainly depends on dynamic processes, while its eastern part is more closely related to air temperature variation. The maintaining of winter SH mainly depends on downward motion of airflow of the nearly entire troposphere. The airflow originates from the North Atlantic sector, whose variation is influenced by the AO. When AO is in its positive (negative) phase, downward motion remarkably weakened (strengthened), which further influences winter SH. In addition, winter AO exhibits significant influences on the simultaneous sea-ice extent in the Barents Sea.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230527,41025017 and 41175041)
文摘Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and E1 Nifio-Southern Oscillation (ENSO) were investigated using an updated temperature dataset comprising 542 Chinese stations during the period 1961- 2011. Results showed that the number of winter extreme warm (cold) days across EC experienced a significant increase (decrease) around the mid-1980s, which could be attributed to interdecadal variation of the East Asian Winter Monsoon (EAWM). Probability distribution functions (PDFs) of winter temperature extremes in different phases of the AO and ENSO were estimated based on Generalized Extreme Value Distribution theory. Correlation analysis and the PDF technique consistently demonstrated that interannual variation of winter extreme cold days in the northern part of EC (NEC) is closely linked to the AO, while it is most strongly related to the ENSO in the southern part (SEC). However, the number of winter extreme warm days across EC has little correlation with both AO and ENSO. Furthermore, results indicated that, whether before or after the mid-1980s shift, a significant connection existed between winter extreme cold days in NEC and the AO. However, a significant connection between winter extreme cold days in SEC and the ENSO was only found after the mid-1980s shift. These results highlight the different roles of the AO and ENSO in influencing winter temperature extremes in different parts of EC and in different periods, thus providing important clues for improving short-term climate prediction for winter temperature extremes.
基金supported by the National Basic Research Program of China (2009CB421405)the National Natural Science Foundation of China (41025017 and 41230527)
文摘With the warm/cold phases of the El Ni o and Southern Oscillation (ENSO) as a background, the impacts of monthly variation in the Arctic Oscillation (AO) on the winter climate anomalies in East Asia are studied with the NCEP/DOE Reanalysis 2 data and the Chinese station data regarding temperature and rainfall. The combined effects of ENSO and the AO indicate that the winter climate anomalies are mainly influenced by the AO in northern China and the ENSO in southern China, when an El Ni o couples with a negative AO month or a La Ni a couples with a positive AO month. These climate anomalies in China are consistent with the mechanisms proposed in previous studies. However, most of China presents a different pattern of climate anomalies if an El Ni o couples with a positive AO month or a La Ni a couples with a negative AO month, with the exception of the temperature anomalies in northern China, which are still affected dominantly by the AO. Further analysis suggests that the causes are attributed to the differences in both the stratosphere-troposphere interaction and the extratropics-tropics interaction. In the former cases, zonal symmetric circulation prevails in the winter and the extratropics-tropics interaction is weakened. Thus, the influences of the ENSO and the AO on the East Asian climate mainly present linear combination effects. On the contrary, an annular mode of atmospheric circulation is not favored in the latter cases and the extratropics-tropics interaction is strong. Hence, the combined effects of the ENSO and the AO on the winter climate in East Asia present nonlinear characteristics.
基金This work was supported by the Natioal Natural Science Foundation of China (Grant No. 40105007)the National Key Basic Research and Development Program (Grant No. G1998040900).
文摘The influence of spring AO on the summer rainfall along the Yangtze River is investigated. The long-term rainfall observations are filtered to remove the low-frequency variations longer than 10 years. The inter-annual components show a high correlation to AO in the last hundred years. The strongest correlation appears for May AO and summer rainfall with a value of -0.39, significant above the 99% confidence level. Associated with one standard deviation stronger May AO index, the rainfall over the Yangtze River to the southern Japan decreases by about 3%-9%, while, at the same time increases by about 3%-6% in the northern China and far-eastern Russia. The coherent changes in rainfall are significantly related to the East Asian summer jet stream in the upper troposphere. When there is stronger AO in spring, the jet stream tends to move polarward in summer, and leads the rainfall-belt to move northward too. That gives rise to a drier condition in the Yangtze River valley, wetter anomalies in northern China.