Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought ...Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the 'whole nation' system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
Aurein is a cationic antimicrobial peptide, rich in phenylalanine residues. Although the peptide has been extensively studied, its mechanism of action is not fully understood and has not been established. This project...Aurein is a cationic antimicrobial peptide, rich in phenylalanine residues. Although the peptide has been extensively studied, its mechanism of action is not fully understood and has not been established. This project is focused on studying the interactions of aurein with model biological membranes and antimalarials using Fourier Transform Infrared (FTIR), fluorescence, dynamic light scattering (DLS), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. FTIR data revealed conformational changes to the secondary structure of the peptide in the presence of the model membranes. The strongest interactions of aurein were found with DOPC and lipid raft systems. Fluorescence data revealed some differences in the mechanism of interaction between aurein and lipid rafts. Topographical analysis was performed using atomic force microscopy (AFM). AFM images of the peptide with its lipid rafts showed a change in surface roughness suggesting a different mechanism of interaction. DLS data in agreement with FTIR confirmed that aurein interacts differently with the lipid rafts. The results gathered from this study provided new insights on the interaction of aurein. On the other hand, drug-drug interaction issues continue to present a major dilemma for the clinician caring for complex patients such as those infected with infectious disease. This study has examined the interaction of aurein with quinine, primaquine, and chloroquine. Significant interactions between aurein and antimalarials occured at a higher concentration of antimalarials. Interactions between aurein and anti-malarials reveal a strong interaction between aurein and primaquine. Interactions between aurein and quinine or chloroquine were found to be weak and negligible. FTIR, TGA, and DSC may be used in a complementary way to gain insights into the possible drug-drug interactions involving aurein. These studies are needed to initiate in vivo controlled interaction studies between antibiotics and anti展开更多
Background: Malaria remains a major cause of morbidity and mortality in Zambia, affecting all levels of society, with children under the age of five and pregnant women being most at risk of serious illness. The availa...Background: Malaria remains a major cause of morbidity and mortality in Zambia, affecting all levels of society, with children under the age of five and pregnant women being most at risk of serious illness. The availability of antimalarial medicines is one of the key interventions of malaria management. This study assessed the availability of antimalarial medicines in community pharmacies in Lusaka district, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 210 community pharmacies from September to November 2022 using a well-structured checklist in selected areas of Lusaka district. The availability was verified by a physical check of the product. The checklist contained the medicines listed both in the guidelines for diagnosis and treatment of malaria in Zambia as well as in the World Health Organization (WHO) malaria treatment guidelines. Results: This study found that all antimalarials listed in the local treatment guidelines for malaria were available in community pharmacies, though with the varying distribution. Of the 210 community pharmacies, 209 (99.5%) had artemether/lumefantrine in stock. The lowest available antimalarial was quinine/clindamycin, which was only available in 3 (1.4%) of the outlets. Conversely, 3 out of 16 (18.8%) antimalarials that were available in community pharmacies were not listed in the local treatment guidelines of malaria in Zambia, despite being listed in the WHO malaria treatment guidelines. This translated into a compliance level of 81.2% based on the local malaria treatment guidelines. Conclusion: This study concluded that antimalarials were available for all categories of malaria management in community pharmacies, though with a varying distribution. The presence of antimalarials not listed in the Zambian treatment guidelines is of public health concern which may have an impact on antimicrobial resistance in the future.展开更多
Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year.Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia,where the disease is endemic.I...Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year.Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia,where the disease is endemic.In non-endemic areas,malaria is the most common cause of imported infection and is associated with significant mortality despite recent advancements and investments in elimination programs.Severe malaria often requires intensive care unit admission and can be complicated by cerebral malaria,respiratory distress,acute kidney injury,bleeding complications,and co-infection.Intensive care management includes prompt diagnosis and early initiation of effective antimalarial therapy,recognition of complications,and appropriate supportive care.However,the lack of diagnostic capacities due to limited advances in equipment,personnel,and infrastructure presents a challenge to the effective diagnosis and management of malaria.This article reviews the clinical classification,diagnosis,and management of malaria as relevant to critical care clinicians,highlighting the role of diagnostic capacity,treatment options,and supportive care.展开更多
文摘Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the 'whole nation' system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
文摘Aurein is a cationic antimicrobial peptide, rich in phenylalanine residues. Although the peptide has been extensively studied, its mechanism of action is not fully understood and has not been established. This project is focused on studying the interactions of aurein with model biological membranes and antimalarials using Fourier Transform Infrared (FTIR), fluorescence, dynamic light scattering (DLS), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. FTIR data revealed conformational changes to the secondary structure of the peptide in the presence of the model membranes. The strongest interactions of aurein were found with DOPC and lipid raft systems. Fluorescence data revealed some differences in the mechanism of interaction between aurein and lipid rafts. Topographical analysis was performed using atomic force microscopy (AFM). AFM images of the peptide with its lipid rafts showed a change in surface roughness suggesting a different mechanism of interaction. DLS data in agreement with FTIR confirmed that aurein interacts differently with the lipid rafts. The results gathered from this study provided new insights on the interaction of aurein. On the other hand, drug-drug interaction issues continue to present a major dilemma for the clinician caring for complex patients such as those infected with infectious disease. This study has examined the interaction of aurein with quinine, primaquine, and chloroquine. Significant interactions between aurein and antimalarials occured at a higher concentration of antimalarials. Interactions between aurein and anti-malarials reveal a strong interaction between aurein and primaquine. Interactions between aurein and quinine or chloroquine were found to be weak and negligible. FTIR, TGA, and DSC may be used in a complementary way to gain insights into the possible drug-drug interactions involving aurein. These studies are needed to initiate in vivo controlled interaction studies between antibiotics and anti
文摘Background: Malaria remains a major cause of morbidity and mortality in Zambia, affecting all levels of society, with children under the age of five and pregnant women being most at risk of serious illness. The availability of antimalarial medicines is one of the key interventions of malaria management. This study assessed the availability of antimalarial medicines in community pharmacies in Lusaka district, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 210 community pharmacies from September to November 2022 using a well-structured checklist in selected areas of Lusaka district. The availability was verified by a physical check of the product. The checklist contained the medicines listed both in the guidelines for diagnosis and treatment of malaria in Zambia as well as in the World Health Organization (WHO) malaria treatment guidelines. Results: This study found that all antimalarials listed in the local treatment guidelines for malaria were available in community pharmacies, though with the varying distribution. Of the 210 community pharmacies, 209 (99.5%) had artemether/lumefantrine in stock. The lowest available antimalarial was quinine/clindamycin, which was only available in 3 (1.4%) of the outlets. Conversely, 3 out of 16 (18.8%) antimalarials that were available in community pharmacies were not listed in the local treatment guidelines of malaria in Zambia, despite being listed in the WHO malaria treatment guidelines. This translated into a compliance level of 81.2% based on the local malaria treatment guidelines. Conclusion: This study concluded that antimalarials were available for all categories of malaria management in community pharmacies, though with a varying distribution. The presence of antimalarials not listed in the Zambian treatment guidelines is of public health concern which may have an impact on antimicrobial resistance in the future.
文摘Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year.Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia,where the disease is endemic.In non-endemic areas,malaria is the most common cause of imported infection and is associated with significant mortality despite recent advancements and investments in elimination programs.Severe malaria often requires intensive care unit admission and can be complicated by cerebral malaria,respiratory distress,acute kidney injury,bleeding complications,and co-infection.Intensive care management includes prompt diagnosis and early initiation of effective antimalarial therapy,recognition of complications,and appropriate supportive care.However,the lack of diagnostic capacities due to limited advances in equipment,personnel,and infrastructure presents a challenge to the effective diagnosis and management of malaria.This article reviews the clinical classification,diagnosis,and management of malaria as relevant to critical care clinicians,highlighting the role of diagnostic capacity,treatment options,and supportive care.