Deployable high-frequency mesh reflector antennas for future communications and obser- vations are required to obtain high gain and high directivity. In order to support these new missions, reflectors with high surfac...Deployable high-frequency mesh reflector antennas for future communications and obser- vations are required to obtain high gain and high directivity. In order to support these new missions, reflectors with high surface accuracy are widely required. The form-finding analysis of deployable mesh reflector antennas becomes more vital which aims to determine the initial surface profile formed by the equilibrium prestress distribution in cables to satisfy the surface accuracy requirement. In this paper, two form-finding methods for mesh reflector antennas, both of which include two steps, are pro- posed. The first step is to investigate the prestress design only for the cable net structure as the circum- ferential nodes connected to the supporting truss are assumed fixed. The second step is to optimize the prestress distribution of the boundary cables connected directly to the supporting truss considering the elastic deformation of the antenna structure. Some numerical examples are carried out and the simulation results demonstrate the proposed form-finding methods can warrant the deformed antenna reflector surface matches the one by design and the cable tension forces fall in a specified range.展开更多
Large reflector antennas are widely used as radio telescopes and active main reflectors are generally applied to improve the surface accuracy. Considering that the high cost has been one important problem in engineeri...Large reflector antennas are widely used as radio telescopes and active main reflectors are generally applied to improve the surface accuracy. Considering that the high cost has been one important problem in engineering, it is worth discussing whether it is necessary to install actuators on all the panels. Thus, in this paper, a hybrid-panel-based new design idea for large reflector antenna is proposed. Assuming that the actuators are installed only in the region of the reflector with large deformations and there are no actuators in other region to reduce the actuator number, the surface accuracies and the corresponding electromagnetic(EM) performances calculated by three different panel adjustment strategies are compared. The most effective method is that the deformed reflector should be first preadjusted to reduce the gravity deformation and then the panels equipped with actuators should be adjusted to the locations determined by the best fitting reflector(BFR) derived by the deformed reflector with no actuators. A 35 m reflector antenna is adopted as an example to calculate the surface accuracy and EM performance when parts of the panels are equipped with actuators. The simulation results show that there is no need to install actuators on all panels and the presented method can greatly reduce the number of actuators with guaranteed surface accuracy. Thus, during the antenna structural design phase, once the surface accuracy requirement is given, the number of actuators can be minimized to reduce the manufacturing and maintenance costs as much as possible. This paper can provide valuable guidance for the design of an active main reflector with hybrid panels.展开更多
基金supported by National Natural Science Foundation of China (Grant No.51375360)
文摘Deployable high-frequency mesh reflector antennas for future communications and obser- vations are required to obtain high gain and high directivity. In order to support these new missions, reflectors with high surface accuracy are widely required. The form-finding analysis of deployable mesh reflector antennas becomes more vital which aims to determine the initial surface profile formed by the equilibrium prestress distribution in cables to satisfy the surface accuracy requirement. In this paper, two form-finding methods for mesh reflector antennas, both of which include two steps, are pro- posed. The first step is to investigate the prestress design only for the cable net structure as the circum- ferential nodes connected to the supporting truss are assumed fixed. The second step is to optimize the prestress distribution of the boundary cables connected directly to the supporting truss considering the elastic deformation of the antenna structure. Some numerical examples are carried out and the simulation results demonstrate the proposed form-finding methods can warrant the deformed antenna reflector surface matches the one by design and the cable tension forces fall in a specified range.
基金supported by the National Key Research and Development Program of China (Grant No. 2021YFC2203600)National Natural Science Foundation of China (Grant Nos. 52005377 and 51975447)+1 种基金Youth Innovation Team of Shaanxi Universities (Grant No. 201926)Fundamental Research Funds for the Central Universities (Grant Nos. JB210404 and JB210403)。
文摘Large reflector antennas are widely used as radio telescopes and active main reflectors are generally applied to improve the surface accuracy. Considering that the high cost has been one important problem in engineering, it is worth discussing whether it is necessary to install actuators on all the panels. Thus, in this paper, a hybrid-panel-based new design idea for large reflector antenna is proposed. Assuming that the actuators are installed only in the region of the reflector with large deformations and there are no actuators in other region to reduce the actuator number, the surface accuracies and the corresponding electromagnetic(EM) performances calculated by three different panel adjustment strategies are compared. The most effective method is that the deformed reflector should be first preadjusted to reduce the gravity deformation and then the panels equipped with actuators should be adjusted to the locations determined by the best fitting reflector(BFR) derived by the deformed reflector with no actuators. A 35 m reflector antenna is adopted as an example to calculate the surface accuracy and EM performance when parts of the panels are equipped with actuators. The simulation results show that there is no need to install actuators on all panels and the presented method can greatly reduce the number of actuators with guaranteed surface accuracy. Thus, during the antenna structural design phase, once the surface accuracy requirement is given, the number of actuators can be minimized to reduce the manufacturing and maintenance costs as much as possible. This paper can provide valuable guidance for the design of an active main reflector with hybrid panels.