期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多维特征下社会化问答社区答案排序研究 被引量:9
1
作者 易明 张婷婷 李梓奇 《图书情报工作》 CSSCI 北大核心 2020年第17期103-113,共11页
[目的/意义]研究多维特征对社会化问答社区答案排序的影响,以提高问答社区服务质量并尽可能优化用户体验。[方法/过程]从答案特征、回答者特征和投票者特征多个维度构建社会化问答社区答案排序特征体系,比较基于深度学习、树、神经网络... [目的/意义]研究多维特征对社会化问答社区答案排序的影响,以提高问答社区服务质量并尽可能优化用户体验。[方法/过程]从答案特征、回答者特征和投票者特征多个维度构建社会化问答社区答案排序特征体系,比较基于深度学习、树、神经网络、支持向量机等11种排序学习算法在问答社区数据集上的适用性,并训练随机森林分类算法,得到每个特征的重要程度。[结果/结论]实验结果表明,基于深度学习的排序学习算法在NDCG@k和MRR指标上的性能均优于其他排序算法,投票者的影响力特征最为重要,其次是答案内容特征,最后是回答者的专业度特征,可以考虑从增加答案排序方式的多样性和提高答案排序算法的综合性两个维度进一步优化答案排序。 展开更多
关键词 社会化问答社区 答案质量 排序学习算法 深度学习算法
原文传递
大众性问答社区答案质量排序方法研究 被引量:9
2
作者 易明 张婷婷 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第6期12-20,共9页
【目的】针对大众性问答社区答案质量参差不齐的现状,对答案质量排序方法进行探讨。【方法】依据信息接受模型,从感知价值角度构建答案质量排序初始指标体系;采用K-Medoids聚类算法对初始指标进行离散化,同时利用粗糙集理论对初始指标... 【目的】针对大众性问答社区答案质量参差不齐的现状,对答案质量排序方法进行探讨。【方法】依据信息接受模型,从感知价值角度构建答案质量排序初始指标体系;采用K-Medoids聚类算法对初始指标进行离散化,同时利用粗糙集理论对初始指标进行约简并赋予权值,进而修正指标体系;运用加权灰色关联分析计算答案的加权灰色关联度,以产生排序结果。【结果】针对"知乎"6类话题下6个问题的2 297条相关数据进行实验分析,排序靠前的答案通常采用图文结合的表达方式、答案所含信息量高,且回答者社区参与度较高,从而答案的质量较高。【局限】数据规模需要扩大,对排序方法的评价还可以优化。【结论】73名"知乎"用户对原始排序与本研究排序进行满意度评价,结果表明本文方法具有优越性。 展开更多
关键词 大众性问答社区 答案质量排序 感知价值 粗糙集理论 加权灰色关联分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部