In this work we present a theoretical explanation for the possible anomalous forces induced by superconducting disks and toroids, based on the hypothesis of a preexisting state of generalized quantum entanglement that...In this work we present a theoretical explanation for the possible anomalous forces induced by superconducting disks and toroids, based on the hypothesis of a preexisting state of generalized quantum entanglement that can produce momentum variation exchanged between Cooper pairs and outer particles. Considering the immense amount of particles involved in the phenomenon as coherent Cooper pairs, and indications of previous studies, we use classical quantities as macroscopic observables in our calculations. We here analyzed the behavior of such superconductors and compared the experimental results early obtained in the literature with our theoretical proposal. We found that the theoretical calculations agreed with very good accuracy for two different experiments and devices. The present work really highlights the possibility of superconducting materials to be applied to induce outer forces in the environment and in external objects, as explained by our theoretical model.展开更多
In this work, we show that anomalous forces in rotating superconductor rings seem to be nonlocal in its nature, according to same theoretical framework in our previous analysis concerning to superconducting disks and ...In this work, we show that anomalous forces in rotating superconductor rings seem to be nonlocal in its nature, according to same theoretical framework in our previous analysis concerning to superconducting disks and toroids. Here we discuss an experiment involving rotating and angularly accelerated superconducting rings and show that the concept of generalized quantum entanglement can explain the anomaly accordingly. In fact, the hypothesis of momentum variation exchanged between Cooper pairs and outer particles regarding a hypothesis of preexisting state of generalized quantum entanglement which is also valid in this system because classical macroscopic quantities are performed in the calculation and indicate good agreement between experimental and theoretical results. We also analyze the possible reason for the discrepance between positive and null results in case of some high voltage discharge experiments involving superconducting discs in terms of nonlocal force induction aiming to reinforce that the anomalous effect can really exist in all of those superconducting systems. The experiments indicate that the anomalous forces are still weak, but our study can provide some possible physical conditions in order to increase the magnitude of the forces and provide future viable technological applications from that phenomenon.展开更多
文摘In this work we present a theoretical explanation for the possible anomalous forces induced by superconducting disks and toroids, based on the hypothesis of a preexisting state of generalized quantum entanglement that can produce momentum variation exchanged between Cooper pairs and outer particles. Considering the immense amount of particles involved in the phenomenon as coherent Cooper pairs, and indications of previous studies, we use classical quantities as macroscopic observables in our calculations. We here analyzed the behavior of such superconductors and compared the experimental results early obtained in the literature with our theoretical proposal. We found that the theoretical calculations agreed with very good accuracy for two different experiments and devices. The present work really highlights the possibility of superconducting materials to be applied to induce outer forces in the environment and in external objects, as explained by our theoretical model.
文摘In this work, we show that anomalous forces in rotating superconductor rings seem to be nonlocal in its nature, according to same theoretical framework in our previous analysis concerning to superconducting disks and toroids. Here we discuss an experiment involving rotating and angularly accelerated superconducting rings and show that the concept of generalized quantum entanglement can explain the anomaly accordingly. In fact, the hypothesis of momentum variation exchanged between Cooper pairs and outer particles regarding a hypothesis of preexisting state of generalized quantum entanglement which is also valid in this system because classical macroscopic quantities are performed in the calculation and indicate good agreement between experimental and theoretical results. We also analyze the possible reason for the discrepance between positive and null results in case of some high voltage discharge experiments involving superconducting discs in terms of nonlocal force induction aiming to reinforce that the anomalous effect can really exist in all of those superconducting systems. The experiments indicate that the anomalous forces are still weak, but our study can provide some possible physical conditions in order to increase the magnitude of the forces and provide future viable technological applications from that phenomenon.