Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy,amino acid s,and minerals in animal production.Amino acid imbalance,especially methionine-to-sulfur amino aci...Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy,amino acid s,and minerals in animal production.Amino acid imbalance,especially methionine-to-sulfur amino acid(Met:SAA)ratio,caused by an imbalance of animal protein meal leads to growth restriction.This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance,plasma amino acid profiles,antioxidant capacity and intestinal morphology in a piglet model.Twenty-four weaned piglets(castrated males;BW=10.46±0.34 kg),assigned randomly into 3 groups(8 piglets/group),were fed for 28 d.Three experimental diets of equal energy and crude protein levels were as follows:1)a corn-soybean basal diet with a Met:SAA ratio at 0.51(BD);2)a plasma powder diet with a low Met:SAA ratio at 0.41(L-MR);3)a fishmeal diet with a high Met:SAA ratio at0.61(H-MR).Results revealed that compared to BD,L-MR significantly decreased(P<0.05)the activities of plasma total antioxidant capacity and glutathione peroxidase,plasma amino acid profiles,and significantly reduced(P<0.05)villus height and crypt depth in the duodenum and jejunum.Additionally,L-MR significantly reduced(P<0.05)the mRNA expression level of solute carrier family 7 member 9(SIC7 A9)in the ileum,and significantly increased(P<0.05)mRNA expression levels of zonula occludens-1(ZO-1)in the duodenum,and Claudin-1,ZO-1,sodium-coupled neutral amino acid transporters 2(SNAT2)and SIC7 A7 in the j ejunum.HMR significantly increased(P<0.05)plasma SAA levels,and significantly reduced(P<0.05)average daily feed intake,villus height,and villus height-to-crypt depth(VH:CD)ratio in the ileum compared to BD.In conclusion,L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth.H-MR may impair intestinal growth and development for weaned piglets.The research provides a guidan展开更多
With the fast development of aquaculture, fish meal needs increased in recent years, however the quantity of fish catching decreases gradually. Fishmeal is a limited feed resource, and serious concern exists on the fu...With the fast development of aquaculture, fish meal needs increased in recent years, however the quantity of fish catching decreases gradually. Fishmeal is a limited feed resource, and serious concern exists on the future availability of this feedstuff for incorporation in fish diets. Undoubtedly, fish meal is well recognized as the best dietary protein source for most marine carnivorous fishes which required high dietary protein levels compared to omnivorous or herbivorous fish. Fishmeal is known for their high content of essential amino acids and fatty acids, low carbohydrates, high digestibility, low levels of anti-nutritional factors (for fresh fish meal) and is a very good source of minerals and is highly palatable. Thus fish meal is in high demand as the protein source for many formulated diets. However, production of fish meal consumes approximately 35% of the total global fish catch, and the increasing price and potentially unstable supply in the market could be limiting factors for marine fish culture. There have been strong efforts to define and develop cost-effective protein sources that can, at least partly, substitute for expensive high-quality fish meals in least-cost feed formulations. The search for fish meal substitutes and alternative dietary protein sources is an international research priority that could be of considerable economic advantages. Therefore it is urgent task to find animal and plant protein sources in place of fish meal. Among these, plant feedstuffs have received most attention in recent years, but due to their amino acid unbalances, presence of anti-nutritional factors and low palatability, a high level of replacement of fish meal with plant feedstuffs in omnivorous fish is generally not well accepted. This paper reviews the research status for other protein sources replacing fish meal based on available information in the literature. Animal and plant protein sources nutrient values are evaluated from the aspect of digestibility, anti-nutrients, physiological status and suitable展开更多
基金National Key Research and Development Program of China(2018YFD0501101)Natural Science Foundation of Hunan Province of China(2018JJ3579)+5 种基金funded by the research program of the National Natural Science Foundation of China(Grant No.31872985)Youth Talent Program of Hunan Province(2018RS3110)Youth Innovation Promotion Association,CAS(2019356)Youth Innovation Team Project of ISA,CAS(2017QNCXTD_TBE)Changsha Key Research System(kq1907074)the China Agricultural Research System(CARS-35)
文摘Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy,amino acid s,and minerals in animal production.Amino acid imbalance,especially methionine-to-sulfur amino acid(Met:SAA)ratio,caused by an imbalance of animal protein meal leads to growth restriction.This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance,plasma amino acid profiles,antioxidant capacity and intestinal morphology in a piglet model.Twenty-four weaned piglets(castrated males;BW=10.46±0.34 kg),assigned randomly into 3 groups(8 piglets/group),were fed for 28 d.Three experimental diets of equal energy and crude protein levels were as follows:1)a corn-soybean basal diet with a Met:SAA ratio at 0.51(BD);2)a plasma powder diet with a low Met:SAA ratio at 0.41(L-MR);3)a fishmeal diet with a high Met:SAA ratio at0.61(H-MR).Results revealed that compared to BD,L-MR significantly decreased(P<0.05)the activities of plasma total antioxidant capacity and glutathione peroxidase,plasma amino acid profiles,and significantly reduced(P<0.05)villus height and crypt depth in the duodenum and jejunum.Additionally,L-MR significantly reduced(P<0.05)the mRNA expression level of solute carrier family 7 member 9(SIC7 A9)in the ileum,and significantly increased(P<0.05)mRNA expression levels of zonula occludens-1(ZO-1)in the duodenum,and Claudin-1,ZO-1,sodium-coupled neutral amino acid transporters 2(SNAT2)and SIC7 A7 in the j ejunum.HMR significantly increased(P<0.05)plasma SAA levels,and significantly reduced(P<0.05)average daily feed intake,villus height,and villus height-to-crypt depth(VH:CD)ratio in the ileum compared to BD.In conclusion,L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth.H-MR may impair intestinal growth and development for weaned piglets.The research provides a guidan
文摘With the fast development of aquaculture, fish meal needs increased in recent years, however the quantity of fish catching decreases gradually. Fishmeal is a limited feed resource, and serious concern exists on the future availability of this feedstuff for incorporation in fish diets. Undoubtedly, fish meal is well recognized as the best dietary protein source for most marine carnivorous fishes which required high dietary protein levels compared to omnivorous or herbivorous fish. Fishmeal is known for their high content of essential amino acids and fatty acids, low carbohydrates, high digestibility, low levels of anti-nutritional factors (for fresh fish meal) and is a very good source of minerals and is highly palatable. Thus fish meal is in high demand as the protein source for many formulated diets. However, production of fish meal consumes approximately 35% of the total global fish catch, and the increasing price and potentially unstable supply in the market could be limiting factors for marine fish culture. There have been strong efforts to define and develop cost-effective protein sources that can, at least partly, substitute for expensive high-quality fish meals in least-cost feed formulations. The search for fish meal substitutes and alternative dietary protein sources is an international research priority that could be of considerable economic advantages. Therefore it is urgent task to find animal and plant protein sources in place of fish meal. Among these, plant feedstuffs have received most attention in recent years, but due to their amino acid unbalances, presence of anti-nutritional factors and low palatability, a high level of replacement of fish meal with plant feedstuffs in omnivorous fish is generally not well accepted. This paper reviews the research status for other protein sources replacing fish meal based on available information in the literature. Animal and plant protein sources nutrient values are evaluated from the aspect of digestibility, anti-nutrients, physiological status and suitable