The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a positi...The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.展开更多
6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing(ECAP)-recrystallization and partial(RAP)process(a combination of equal-channel angular processing and recrystallization and par...6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing(ECAP)-recrystallization and partial(RAP)process(a combination of equal-channel angular processing and recrystallization and partial remelting).The effects of different process parameters on the alloy microstructure were studied and the quantitative relationship between the process parameters and microstructure was established by response surface methodology(RSM)to optimize the process parameters.According to the orthogonal test,the holding temperature and holding time of the four ECAP-RAP process parameters were found to have the greatest impact on the microstructural characteristics,including average grain size and average shape factor.Through RSM,it was also found that when the average grain size or the average shape factor is optimized separately,another will be degraded.When the two indexes were simultaneously considered,the optimal process parameters were found to be a holding temperature of 623°C and holding time of 13 min,and the corresponding average grain size and average shape factor were 35.97μm and 0.8535,respectively.Moreover,comparing the experimental and predicted values,the reliability of the established response surface model was verified.展开更多
为解决核事故或其他涉核场景应急或处置训练过程中,受训人员暴露在核辐射环境下存在内外照射风险的问题,以核辐射监测训练为例,应用虚拟现实(VR)技术模拟训练过程。首先,构建点源辐射场多层介质衰减计算方法;其次,分段线性简化探测器角...为解决核事故或其他涉核场景应急或处置训练过程中,受训人员暴露在核辐射环境下存在内外照射风险的问题,以核辐射监测训练为例,应用虚拟现实(VR)技术模拟训练过程。首先,构建点源辐射场多层介质衰减计算方法;其次,分段线性简化探测器角度响应曲线,以模拟探测器对方位角度的响应;然后,开发考虑物体遮挡以及探测器角度响应的虚拟探测器读数实时计算模型;最后,构建全沉浸式虚拟训练系统。结果表明:系统计算的虚拟探测器位置处剂量率值与美国保健物理学会(HPS)Rad Pro Calculator计算结果一致,符合物理规律;探测器读数根据探测器方位角和空间位置进行修正,可还原真实探测过程中探测器显示数值变化,受训者在虚拟训练过程中得到与真实核辐射监测相似的反馈;从实时虚拟辐射场计算、核辐射监测设备仿真到人员全沉浸体验的系统优化设计,能够避免受训人员赴真核环境训练核辐射对身体健康的影响,有助于提高受训人员应急辐射监测能力水平。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40704026 and 41374167)
文摘The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.
基金the National Key Research and Development Program of China(Nos.2017YFB0701803 and 2016YFB0701403)the State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization,China。
文摘6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing(ECAP)-recrystallization and partial(RAP)process(a combination of equal-channel angular processing and recrystallization and partial remelting).The effects of different process parameters on the alloy microstructure were studied and the quantitative relationship between the process parameters and microstructure was established by response surface methodology(RSM)to optimize the process parameters.According to the orthogonal test,the holding temperature and holding time of the four ECAP-RAP process parameters were found to have the greatest impact on the microstructural characteristics,including average grain size and average shape factor.Through RSM,it was also found that when the average grain size or the average shape factor is optimized separately,another will be degraded.When the two indexes were simultaneously considered,the optimal process parameters were found to be a holding temperature of 623°C and holding time of 13 min,and the corresponding average grain size and average shape factor were 35.97μm and 0.8535,respectively.Moreover,comparing the experimental and predicted values,the reliability of the established response surface model was verified.
文摘为解决核事故或其他涉核场景应急或处置训练过程中,受训人员暴露在核辐射环境下存在内外照射风险的问题,以核辐射监测训练为例,应用虚拟现实(VR)技术模拟训练过程。首先,构建点源辐射场多层介质衰减计算方法;其次,分段线性简化探测器角度响应曲线,以模拟探测器对方位角度的响应;然后,开发考虑物体遮挡以及探测器角度响应的虚拟探测器读数实时计算模型;最后,构建全沉浸式虚拟训练系统。结果表明:系统计算的虚拟探测器位置处剂量率值与美国保健物理学会(HPS)Rad Pro Calculator计算结果一致,符合物理规律;探测器读数根据探测器方位角和空间位置进行修正,可还原真实探测过程中探测器显示数值变化,受训者在虚拟训练过程中得到与真实核辐射监测相似的反馈;从实时虚拟辐射场计算、核辐射监测设备仿真到人员全沉浸体验的系统优化设计,能够避免受训人员赴真核环境训练核辐射对身体健康的影响,有助于提高受训人员应急辐射监测能力水平。