Using the modified Blonder-Tinkham-Klapwijk(BTK)theory,the interplay between the lifetime of quasi particles and the magnetic gap in a topological insulator-based ferromagnet/fwave superconductor(TI-based FM/f-wave SC...Using the modified Blonder-Tinkham-Klapwijk(BTK)theory,the interplay between the lifetime of quasi particles and the magnetic gap in a topological insulator-based ferromagnet/fwave superconductor(TI-based FM/f-wave SC)tunnel structure is theoretically studied.Two symmetries of f_(1) and f_(2) waves are considered for superconducting pairing states.The results indicate that reducing the finite quasi-particle lifetime will induce a transformation of energy-gap peaks into a zero-bias peak in tunneling conductance spectrum,as well as a transformation of energy-gap dips into a zero-bias dip in shot noise spectrum,ultimately resulting in the smoothing of the zero-bias conductance peak and the zero-bias shot noise dip.An increase in magnetic gap will suppress the tunnel conductance and shot noise when the conventional Andreev retroreflection dominates,but will enhance them when the specular Andreev reflection is dominant.Both specular Andreev reflection and conventional Andreev retro-reflection will be enhanced as the quasi-particle lifetime increases.When Fermi energy equals the magnetic gap,shot noise and tunneling conductance vanish across all energy ranges.These findings not only contribute to a better understanding of specular Andreev reflection in the FM/f-wave SC junction based on TIs but also provide insights for experimentally determining the f-wave pairing symmetry.展开更多
The Ising spin–orbit coupling could give rise to the spin-triplet Cooper pairs and equal-spin Andreev reflection(AR)in Ising superconductors.Here we theoretically study the valley-dependent equal-spin AR in a ferroma...The Ising spin–orbit coupling could give rise to the spin-triplet Cooper pairs and equal-spin Andreev reflection(AR)in Ising superconductors.Here we theoretically study the valley-dependent equal-spin AR in a ferromagnet/Ising superconductor junction with a circularly polarized light applied to the ferromagnet.Because of the spin-triplet Cooper pairs and the optical irradiation,eight kinds of AR processes appear in the junction,including equal-spin AR and normal AR,the strengths and properties of which strongly depend on the valley degree of freedom.The AR probabilities for the incident electron from the two valleys exhibit certain symmetry with respect to the magnetization angle and the effective energy of light.The equal-spin AR and normal AR present different features and resonant behaviors near the superconducting gap edges.Due to equal-spin-triplet Cooper pairs,not only charge supercurrent but also spin supercurrent can transport in the Ising superconductors.The differential spin conductance for electron injecting from the two valleys can be controlled by the circularly polarized light.展开更多
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator(TI)ferromagnet/superconductor(FM/SC)junction.The tunneling conductance and...The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator(TI)ferromagnet/superconductor(FM/SC)junction.The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory.It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection.The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections.There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero.These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.展开更多
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two...We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.展开更多
We investigate the quantum transport properties through a special kind of quantum dot(QD) system composed of a serially coupled multi-QD-pair(multi-QDP) chain and side-coupled Majorana bound states(MBSs) by usin...We investigate the quantum transport properties through a special kind of quantum dot(QD) system composed of a serially coupled multi-QD-pair(multi-QDP) chain and side-coupled Majorana bound states(MBSs) by using the Green functions method,where the conductance can be classified into two kinds:the electron tunneling(ET) conductance and the Andreev reflection(AR) one.First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e^2/h is present(or absent) when the MBS is coupled to the far left(or the other) QDP.Moreover,the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one,and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs,indicating that the MBS will make obvious influences on the competition between the ET and AR processes.Then we find that the tunneling rate ΓLis able to affect the conductances of leads L and R in different ways,demonstrating that there exists a ΓL-related competition between the AR and ET processes.Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e^2/h into two sub-peaks.As the inter-MBS coupling becomes stronger,the two sub-peaks are pushed away from each other and simultaneously become lower,which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e^2/2h become higher.Also,the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger.This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs,which is helpful for understanding the nature of the MBSs,as well as the MBS-related QD transport properties.展开更多
In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case...In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case of strong onsite electronic interactions. We find that in general, the Josephson effect and multiple Andreev reflections in these systems are strongly suppressed due to the onsite interaction. However, in case resonant phonons are found, the effect of the onsite interaction can be overcome.展开更多
The tunneling spectrum of an electron and a hole in metal superconductor-metal junctions is com- puted using the Blonder-Tinkham Klapwijk method. The incident and the outgoing currents finally balance each other by an...The tunneling spectrum of an electron and a hole in metal superconductor-metal junctions is com- puted using the Blonder-Tinkham Klapwijk method. The incident and the outgoing currents finally balance each other by an interface charge inside the superconductor and metal junction. The present computation shows a more abundant structure compared to that on a metal superconductor junc- tion, such as the resonance at bias voltages above the energy gap of the superconductor. The density of the interface charge shows a quantum-like oscillation.展开更多
We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-chan...We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-channel conductor which contains a scattering region and Andreev reflection with the discrete potential model and effective scattering approach.展开更多
Interface bound states have been theoretically predicted to appear at isolated graphene-superconductor junctions. These states are formed at the interface due to the interplay between virtual Andreev and normal reflec...Interface bound states have been theoretically predicted to appear at isolated graphene-superconductor junctions. These states are formed at the interface due to the interplay between virtual Andreev and normal reflections and provide long range superconducting correlations on the graphene layer. We describe in detail the formation of these states from combining the Dirac equation with the Bogoliubov de Gennes equations of superconductivity. On the other hand, fluctuations of the low energy charge density in graphene have been confirmed as the dominating type of disorder. For analyzing the effect of disorder on these states we use a microscopic tight binding model. We show how the formation of these states is robust against the presence of disorder in the form of electron charge inhomogeneities in the graphene layer. We numerically compute the effect of disorder on the interface bound states and on the local density of states of graphene.展开更多
Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enh...Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD--MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.展开更多
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some paramete...We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.展开更多
文摘Using the modified Blonder-Tinkham-Klapwijk(BTK)theory,the interplay between the lifetime of quasi particles and the magnetic gap in a topological insulator-based ferromagnet/fwave superconductor(TI-based FM/f-wave SC)tunnel structure is theoretically studied.Two symmetries of f_(1) and f_(2) waves are considered for superconducting pairing states.The results indicate that reducing the finite quasi-particle lifetime will induce a transformation of energy-gap peaks into a zero-bias peak in tunneling conductance spectrum,as well as a transformation of energy-gap dips into a zero-bias dip in shot noise spectrum,ultimately resulting in the smoothing of the zero-bias conductance peak and the zero-bias shot noise dip.An increase in magnetic gap will suppress the tunnel conductance and shot noise when the conventional Andreev retroreflection dominates,but will enhance them when the specular Andreev reflection is dominant.Both specular Andreev reflection and conventional Andreev retro-reflection will be enhanced as the quasi-particle lifetime increases.When Fermi energy equals the magnetic gap,shot noise and tunneling conductance vanish across all energy ranges.These findings not only contribute to a better understanding of specular Andreev reflection in the FM/f-wave SC junction based on TIs but also provide insights for experimentally determining the f-wave pairing symmetry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974153,12374034 and 11921005)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302403)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘The Ising spin–orbit coupling could give rise to the spin-triplet Cooper pairs and equal-spin Andreev reflection(AR)in Ising superconductors.Here we theoretically study the valley-dependent equal-spin AR in a ferromagnet/Ising superconductor junction with a circularly polarized light applied to the ferromagnet.Because of the spin-triplet Cooper pairs and the optical irradiation,eight kinds of AR processes appear in the junction,including equal-spin AR and normal AR,the strengths and properties of which strongly depend on the valley degree of freedom.The AR probabilities for the incident electron from the two valleys exhibit certain symmetry with respect to the magnetization angle and the effective energy of light.The equal-spin AR and normal AR present different features and resonant behaviors near the superconducting gap edges.Due to equal-spin-triplet Cooper pairs,not only charge supercurrent but also spin supercurrent can transport in the Ising superconductors.The differential spin conductance for electron injecting from the two valleys can be controlled by the circularly polarized light.
文摘The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator(TI)ferromagnet/superconductor(FM/SC)junction.The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory.It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection.The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections.There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero.These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775091,10774094,10974124,and 11047172)the Excellent Youth and Midlife Scientist Scientific Research Encouragement Foundation of Shandong Province,China(Grant No. BS2010DS006)the Doctor Research Startup Foundation of Linyi University,China (Grant No. BS201023)
文摘We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274040 and 10974015)the Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0044)
文摘We investigate the quantum transport properties through a special kind of quantum dot(QD) system composed of a serially coupled multi-QD-pair(multi-QDP) chain and side-coupled Majorana bound states(MBSs) by using the Green functions method,where the conductance can be classified into two kinds:the electron tunneling(ET) conductance and the Andreev reflection(AR) one.First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e^2/h is present(or absent) when the MBS is coupled to the far left(or the other) QDP.Moreover,the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one,and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs,indicating that the MBS will make obvious influences on the competition between the ET and AR processes.Then we find that the tunneling rate ΓLis able to affect the conductances of leads L and R in different ways,demonstrating that there exists a ΓL-related competition between the AR and ET processes.Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e^2/h into two sub-peaks.As the inter-MBS coupling becomes stronger,the two sub-peaks are pushed away from each other and simultaneously become lower,which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e^2/2h become higher.Also,the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger.This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs,which is helpful for understanding the nature of the MBSs,as well as the MBS-related QD transport properties.
文摘In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case of strong onsite electronic interactions. We find that in general, the Josephson effect and multiple Andreev reflections in these systems are strongly suppressed due to the onsite interaction. However, in case resonant phonons are found, the effect of the onsite interaction can be overcome.
文摘The tunneling spectrum of an electron and a hole in metal superconductor-metal junctions is com- puted using the Blonder-Tinkham Klapwijk method. The incident and the outgoing currents finally balance each other by an interface charge inside the superconductor and metal junction. The present computation shows a more abundant structure compared to that on a metal superconductor junc- tion, such as the resonance at bias voltages above the energy gap of the superconductor. The density of the interface charge shows a quantum-like oscillation.
文摘We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-channel conductor which contains a scattering region and Andreev reflection with the discrete potential model and effective scattering approach.
文摘Interface bound states have been theoretically predicted to appear at isolated graphene-superconductor junctions. These states are formed at the interface due to the interplay between virtual Andreev and normal reflections and provide long range superconducting correlations on the graphene layer. We describe in detail the formation of these states from combining the Dirac equation with the Bogoliubov de Gennes equations of superconductivity. On the other hand, fluctuations of the low energy charge density in graphene have been confirmed as the dominating type of disorder. For analyzing the effect of disorder on these states we use a microscopic tight binding model. We show how the formation of these states is robust against the presence of disorder in the form of electron charge inhomogeneities in the graphene layer. We numerically compute the effect of disorder on the interface bound states and on the local density of states of graphene.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 10974043)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2011205092 and 2014205005)the Fund for Hebei Normal University for Nationalities,China(Grant No.201109)
文摘Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD--MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474106)
文摘We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.