Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ...Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.展开更多
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often...Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.展开更多
基金supported by the Natural Science Foundation of Liaoning Province(No.2022-MS-353)Basic Scientific Research Project of Education Department of Liaoning Province(Nos.2020LNZD06 and LJKMZ20220640)。
文摘Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.
基金supported in part by the National Natural Science Foundation of China(42001408).
文摘Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.