Objective To establish the method of isolation, purification, and identification of human amniotic mesenchymal stem cells (hAMSCs). Methods hAMSCs were isolated from human amniotic membrane by trypsin-collagenase dige...Objective To establish the method of isolation, purification, and identification of human amniotic mesenchymal stem cells (hAMSCs). Methods hAMSCs were isolated from human amniotic membrane by trypsin-collagenase digestion, and cultured in Dulbecco's modified Eagle's medinm/F12 medium supplemented with 10% fetal bovine serum. Phenotypic characteristics of these cells were analyzed by means of immunocytochemistry and flow cytometry. Results The cells successfully isolated from human amniotic membrane expressed representative mesenchymal cell surface markers CD44, CD90, and vimentin, but not CD45. Conclusions This study establishes a potential method for isolation of hAMSCs from human amnion, in vitro culture, and identification. The isolated cells show phenotypic characteristics of mesenchymal stem cells.展开更多
Objective: The purpose of this study was to determine the role of Ureaplasma urealyticum-derived lipidassociated membrane proteins (LAMPs) in the host innate immune system, specifically their effect on Toll-like re...Objective: The purpose of this study was to determine the role of Ureaplasma urealyticum-derived lipidassociated membrane proteins (LAMPs) in the host innate immune system, specifically their effect on Toll-like receptors (TLRs). Methods: LAMPs were derived from U. urea/yticum strains, and human amniotic epithelial cells (HAECs) were isolated from healthy full-term placentas. Cytokine concentrations were determined by enzyme-linked immunosorbent assay (ELISA) and TLR2 mRNA by real-time PCR. Expression of TLR2 was confirmed by Western blotting and immunohistochemistry. Results: LAMPs induced HAECs to produce inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Cytokine production was reduced after blocking TLR2 using TLR2 inhibitor (anti-hTLR2-IgA). Conclusions: LAMPs isolated from U. urealyticum induced TLR2-dependent up-regulation of inflammatory genes and cytokines in HAECs.展开更多
Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that ...Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.展开更多
Defects in craniofacial bones occur congenitally,after high-energy impacts,and during the course of treatment for stroke and cancer.These injuries are difficult to heal due to the overwhelming size of the injury area ...Defects in craniofacial bones occur congenitally,after high-energy impacts,and during the course of treatment for stroke and cancer.These injuries are difficult to heal due to the overwhelming size of the injury area and the inflammatory environment surrounding the injury.Significant inflammatory response after injury may greatly inhibit regenerative healing.We have developed mineralized collagen scaffolds that can induce osteogenic differentiation and matrix biosynthesis in the absence of osteogenic media or supplemental proteins.The amniotic membrane is derived from placentas and has been recently investigated as an extracellular matrix to prevent chronic inflammation.Herein,we hypothesized that a mineralized collagen-amnion composite scaffold could increase osteogenic activity in the presence of inflammatory cytokines.We report mechanical properties of a mineralized collagen-amnion scaffold and investigated osteogenic differentiation and mineral deposition of porcine adipose-derived stem cells within these scaffolds as a function of inflammatory challenge.Incorporation of amniotic membrane matrix promotes osteogenesis similarly to un-modified mineralized collagen scaffolds,and increases in mineralized collagen-amnion scaffolds under inflammatory challenge.Together,these findings suggest that a mineralized collagen-amnion scaffold may provide a beneficial environment to aid craniomaxillofacial bone repair,especially in the course of defects presenting significant inflammatory complications.展开更多
基金Supported by Science and Technology Program of Shenyang (2009-090063, 2011-F10-222-4-00)
文摘Objective To establish the method of isolation, purification, and identification of human amniotic mesenchymal stem cells (hAMSCs). Methods hAMSCs were isolated from human amniotic membrane by trypsin-collagenase digestion, and cultured in Dulbecco's modified Eagle's medinm/F12 medium supplemented with 10% fetal bovine serum. Phenotypic characteristics of these cells were analyzed by means of immunocytochemistry and flow cytometry. Results The cells successfully isolated from human amniotic membrane expressed representative mesenchymal cell surface markers CD44, CD90, and vimentin, but not CD45. Conclusions This study establishes a potential method for isolation of hAMSCs from human amnion, in vitro culture, and identification. The isolated cells show phenotypic characteristics of mesenchymal stem cells.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Nos.LY18H040001 and LY16H040003)the Department of Education of Zhejiang Province(No.Y201534723)the Science and Technology Development Project in Hangzhou(No.20160533B13),China
文摘Objective: The purpose of this study was to determine the role of Ureaplasma urealyticum-derived lipidassociated membrane proteins (LAMPs) in the host innate immune system, specifically their effect on Toll-like receptors (TLRs). Methods: LAMPs were derived from U. urea/yticum strains, and human amniotic epithelial cells (HAECs) were isolated from healthy full-term placentas. Cytokine concentrations were determined by enzyme-linked immunosorbent assay (ELISA) and TLR2 mRNA by real-time PCR. Expression of TLR2 was confirmed by Western blotting and immunohistochemistry. Results: LAMPs induced HAECs to produce inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Cytokine production was reduced after blocking TLR2 using TLR2 inhibitor (anti-hTLR2-IgA). Conclusions: LAMPs isolated from U. urealyticum induced TLR2-dependent up-regulation of inflammatory genes and cytokines in HAECs.
文摘Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.
文摘Defects in craniofacial bones occur congenitally,after high-energy impacts,and during the course of treatment for stroke and cancer.These injuries are difficult to heal due to the overwhelming size of the injury area and the inflammatory environment surrounding the injury.Significant inflammatory response after injury may greatly inhibit regenerative healing.We have developed mineralized collagen scaffolds that can induce osteogenic differentiation and matrix biosynthesis in the absence of osteogenic media or supplemental proteins.The amniotic membrane is derived from placentas and has been recently investigated as an extracellular matrix to prevent chronic inflammation.Herein,we hypothesized that a mineralized collagen-amnion composite scaffold could increase osteogenic activity in the presence of inflammatory cytokines.We report mechanical properties of a mineralized collagen-amnion scaffold and investigated osteogenic differentiation and mineral deposition of porcine adipose-derived stem cells within these scaffolds as a function of inflammatory challenge.Incorporation of amniotic membrane matrix promotes osteogenesis similarly to un-modified mineralized collagen scaffolds,and increases in mineralized collagen-amnion scaffolds under inflammatory challenge.Together,these findings suggest that a mineralized collagen-amnion scaffold may provide a beneficial environment to aid craniomaxillofacial bone repair,especially in the course of defects presenting significant inflammatory complications.