AlN/Al0.3Ga0.7N superlattices were grown on (0001) sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The superlattice period varies from 6 to 30. The layer thickness of different period stack was ...AlN/Al0.3Ga0.7N superlattices were grown on (0001) sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The superlattice period varies from 6 to 30. The layer thickness of different period stack was designed. GaN or AlGaN template was employed for growing AlN/AlGaN superlattices. Reflectivity, SEM, AFM and XRD data of the AlxGa1-xN/AlN superlattices are presented. It is found that the templates used have an intensive impact on surface roughness and interfacial properties of following AlN/AlGaN superlattices. The result of atomic force microscopy indicates that AlN/AlGaN superlattices grown on GaN template exhibit quasi-two-dimensional growth mode. The resulting superlattice has a smooth surface morphology and distinct interface. No crack is observed in the area of a 2-inch wafer.展开更多
基金Supported by the Special Funds for Major State Basic Research Project (973 Project) (Grant No.2006CB6049)the Hi-tech Research Project (Grant Nos.2006AA03A103,2006AA03A118,and 2006AA03A142)+1 种基金the National Natural Science Foundation of China (Grant No.60676057)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20050284004)
文摘AlN/Al0.3Ga0.7N superlattices were grown on (0001) sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The superlattice period varies from 6 to 30. The layer thickness of different period stack was designed. GaN or AlGaN template was employed for growing AlN/AlGaN superlattices. Reflectivity, SEM, AFM and XRD data of the AlxGa1-xN/AlN superlattices are presented. It is found that the templates used have an intensive impact on surface roughness and interfacial properties of following AlN/AlGaN superlattices. The result of atomic force microscopy indicates that AlN/AlGaN superlattices grown on GaN template exhibit quasi-two-dimensional growth mode. The resulting superlattice has a smooth surface morphology and distinct interface. No crack is observed in the area of a 2-inch wafer.