High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash ...High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.展开更多
alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite...alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite were conducted. The flotation mechanisms were explained in view of the structures of reagents and aluminium silicate minerals, zeta potential and Fourier transform infrared spectrum measurements. The results show that the synthesized r-alkoxy-propylamines are more effective than dodecyl amine for flotation of kaolinite, pyrophyllite and illite. For flotation kaolinite and illite, the collecting ability is in the order of C18H37O(CH2)3NH2>C16H33O-(CH2)3NH2>C14H29O(CH2)3NH2>C12H25O(CH2)3NH2, but the r-alkoxy-propylamines types of collectors have almost the same collecting ability on pyrophyllite, which demonstrating that γ-alkoxy-propylamines are new selective collectors for reverse floatation to remove aluminium silicate minerals from bauxite.展开更多
基金This work was supported by the National High-Tech Research and Development Program of China (No.2003AA332020), the Nation-al Natural Science Foundation of China (No.50474002) and the Key Project of the Ministry of Education of China (No.104231).
文摘High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.
文摘alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite were conducted. The flotation mechanisms were explained in view of the structures of reagents and aluminium silicate minerals, zeta potential and Fourier transform infrared spectrum measurements. The results show that the synthesized r-alkoxy-propylamines are more effective than dodecyl amine for flotation of kaolinite, pyrophyllite and illite. For flotation kaolinite and illite, the collecting ability is in the order of C18H37O(CH2)3NH2>C16H33O-(CH2)3NH2>C14H29O(CH2)3NH2>C12H25O(CH2)3NH2, but the r-alkoxy-propylamines types of collectors have almost the same collecting ability on pyrophyllite, which demonstrating that γ-alkoxy-propylamines are new selective collectors for reverse floatation to remove aluminium silicate minerals from bauxite.