Aluminium toxicity in acid soils having pH below 5.5, affects the production of staple food crops, vegetables and cash crops worldwide. About 50% of the world’s potentially arable lands are acidic. It is trivalent ca...Aluminium toxicity in acid soils having pH below 5.5, affects the production of staple food crops, vegetables and cash crops worldwide. About 50% of the world’s potentially arable lands are acidic. It is trivalent cationic form i.e. Al3+ that limits the plant’s growth. Absorbed Aluminium inhibits root elongation and adversely affects plant growth. Recently researches have been conducted to understand the mechanism of Aluminium toxicity and resistance which is important for stable food production in future. Aluminium resistance depends on the ability of the plant to tolerate Aluminium in symplast or to exclude it to soil. Physiological and molecular basis of Aluminium toxicity and resistance mechanism are important to understand for developing genetically engineered plants for Al toxicity resistance. This paper provides an overview of the state of art in this field.展开更多
The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhib...The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.展开更多
文摘Aluminium toxicity in acid soils having pH below 5.5, affects the production of staple food crops, vegetables and cash crops worldwide. About 50% of the world’s potentially arable lands are acidic. It is trivalent cationic form i.e. Al3+ that limits the plant’s growth. Absorbed Aluminium inhibits root elongation and adversely affects plant growth. Recently researches have been conducted to understand the mechanism of Aluminium toxicity and resistance which is important for stable food production in future. Aluminium resistance depends on the ability of the plant to tolerate Aluminium in symplast or to exclude it to soil. Physiological and molecular basis of Aluminium toxicity and resistance mechanism are important to understand for developing genetically engineered plants for Al toxicity resistance. This paper provides an overview of the state of art in this field.
文摘The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.