Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pall...Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages(M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages(stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L-1, P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases(paeoniflorin 10, 30, 100 μmol·L-1, P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells(paeoniflorin 100 μmol·L-1, P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4(paeoniflorin 1, 3, 10, 30, 100 μmol·L-1, P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo(paeoniflorin 20, 40 mg·kg-1, P < 0.01 vs control group). These results suggest that paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft partly through 展开更多
Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progeni...Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mR NA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Co展开更多
CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining host immune tolerance via regulation of the phenotype and function of the innate and adaptive immune cells. Whether allogeneic CD4+CD25+...CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining host immune tolerance via regulation of the phenotype and function of the innate and adaptive immune cells. Whether allogeneic CD4+CD25+ Tregs can regulate recipient mouse macrophages is unknown. The effect of allogeneic donor CD4+CD25+ Tregs on recipient mouse resident F4/80+macrophages was investigated using a mouse model in which allogeneic donor CD4+CD25+ Tregs were adoptively transferred into the peritoneal cavity of host NOD-scid mice. The phenotype and function of the recipient macrophages were then assayed. The peritoneal F4/80+ macrophages in the recipient mice that received the allogeneic CD4+CD25+ Tregs expressed significantly higher levels of CD23 and programmed cell death-ligand I(PD-L1) and lower levels of CD80, CD86, CD40 and MHC II molecules compared to the mice that received either allogeneic CD4+CD25- T cells (Teffs) or no cells. The resident F4/80+ macrophages of the recipient mice injected with the allogeneic donor CD4+CD25+ Tregs displayed significantly increased phagocytosis of chicken red blood cells (cRBCs) and arginase activity together with increased IL-IO production, whereas these macrophages also showed decreased immunogenicity and nitric oxide (NO) production. Blocking arginase partially but significantly reversed the effects of CD4+CD25+ Tregs with regard to the induction of the M2 macrophages in vivo. Therefore, the allogeneic donor CD4+CD25+ Tregs can induce the M2 macrophages in recipient mice at least in part via an arginase pathway. We have provided in vivo evidence to support the unknown pathways by which allogeneic donor CD4+CD25+ Tregs regulate innate immunity in recipient mice by promoting the differentiation of M2 macrophages.展开更多
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarde...The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarded as a biochemical marker of macrophage activation. So far, the physiological or pathological role of YKL-39 in the inflammation is still poorly understood. We compared YKL-39 and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR from mRNA of human monocytes obtained from buffy coat of healthy volunteers, from mRNA of polarized macrophages to classically activated macrophages (or M1), obtained by interferon-γ and lipopolysaccharide exposure, and from mRNA of alternatively activated macrophages (or M2) obtained by interleukin-4 exposure. We demonstrated different variations of YKL-39 and CHIT-1 production during macrophages polarization. CHIT-1 levels gradually increase in the course of the time with a peak of expression between the fifth and the seventh day of culture. In contrast, YKL-39 expression was unaltered in the diverse stage of HMMs differentiation, but increased significantly in M1 polarized macrophages and reverted to base levels in M2 polarized macrophages. These findings indicated that the function of YKL-39 is much more restricted and selective than that exerted by CHIT-1.展开更多
基金supported by National Natural Science Foundation of China(No.81503284)Fundamental Research Funds for the Central Universities(No.2015PY016)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages(M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages(stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L-1, P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases(paeoniflorin 10, 30, 100 μmol·L-1, P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells(paeoniflorin 100 μmol·L-1, P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4(paeoniflorin 1, 3, 10, 30, 100 μmol·L-1, P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo(paeoniflorin 20, 40 mg·kg-1, P < 0.01 vs control group). These results suggest that paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft partly through
基金supported by the National Natural Science Foundation of China,No.81171173 and 81672161
文摘Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mR NA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Co
基金The authors wish to thank Drs Shuping Zhou and Zeqing Niu for their kind review of the manuscript, Ms ling Wang, Mr Yabing Liu and Ms Xiaoqiu Liu for their expert technical assistance, Ms Qinghuan Li and ]ianxia Peng for their excellent laboratory management and Mr Baisheng Ren for his outstanding animal husbandry. This work was supported by grants from the National Natural Science Foundation (C81072396, U0832003, YZ C31171407 and 81273201, GL), the Ministry of Science and Technology of China (2010CB945301, YZ) and the Chinese Academy of Sciences for Distinguished Young Scientists (KSCX2-EW-Q-7, GL).
文摘CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining host immune tolerance via regulation of the phenotype and function of the innate and adaptive immune cells. Whether allogeneic CD4+CD25+ Tregs can regulate recipient mouse macrophages is unknown. The effect of allogeneic donor CD4+CD25+ Tregs on recipient mouse resident F4/80+macrophages was investigated using a mouse model in which allogeneic donor CD4+CD25+ Tregs were adoptively transferred into the peritoneal cavity of host NOD-scid mice. The phenotype and function of the recipient macrophages were then assayed. The peritoneal F4/80+ macrophages in the recipient mice that received the allogeneic CD4+CD25+ Tregs expressed significantly higher levels of CD23 and programmed cell death-ligand I(PD-L1) and lower levels of CD80, CD86, CD40 and MHC II molecules compared to the mice that received either allogeneic CD4+CD25- T cells (Teffs) or no cells. The resident F4/80+ macrophages of the recipient mice injected with the allogeneic donor CD4+CD25+ Tregs displayed significantly increased phagocytosis of chicken red blood cells (cRBCs) and arginase activity together with increased IL-IO production, whereas these macrophages also showed decreased immunogenicity and nitric oxide (NO) production. Blocking arginase partially but significantly reversed the effects of CD4+CD25+ Tregs with regard to the induction of the M2 macrophages in vivo. Therefore, the allogeneic donor CD4+CD25+ Tregs can induce the M2 macrophages in recipient mice at least in part via an arginase pathway. We have provided in vivo evidence to support the unknown pathways by which allogeneic donor CD4+CD25+ Tregs regulate innate immunity in recipient mice by promoting the differentiation of M2 macrophages.
文摘The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarded as a biochemical marker of macrophage activation. So far, the physiological or pathological role of YKL-39 in the inflammation is still poorly understood. We compared YKL-39 and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR from mRNA of human monocytes obtained from buffy coat of healthy volunteers, from mRNA of polarized macrophages to classically activated macrophages (or M1), obtained by interferon-γ and lipopolysaccharide exposure, and from mRNA of alternatively activated macrophages (or M2) obtained by interleukin-4 exposure. We demonstrated different variations of YKL-39 and CHIT-1 production during macrophages polarization. CHIT-1 levels gradually increase in the course of the time with a peak of expression between the fifth and the seventh day of culture. In contrast, YKL-39 expression was unaltered in the diverse stage of HMMs differentiation, but increased significantly in M1 polarized macrophages and reverted to base levels in M2 polarized macrophages. These findings indicated that the function of YKL-39 is much more restricted and selective than that exerted by CHIT-1.