BY using all-sky(fish-eye)lens and highly sensitive TV camera,the effective monitoring ra-dius and time resolution of ground aurora observation have now been raised to 600 km and1/30 s(for instance,SIT-TV camera recor...BY using all-sky(fish-eye)lens and highly sensitive TV camera,the effective monitoring ra-dius and time resolution of ground aurora observation have now been raised to 600 km and1/30 s(for instance,SIT-TV camera recording in NTSC format).By incorporating high-sen-sitivity imaging device(integrated from image intensifier and CCD(charge coupled device)展开更多
The automatic all-sky imager developed by the Institute of Atmospheric Physics,Chinese Academy of Sciences,provides all-sky visible images in the red,green,and blue channels.This paper presents three major cali-bratio...The automatic all-sky imager developed by the Institute of Atmospheric Physics,Chinese Academy of Sciences,provides all-sky visible images in the red,green,and blue channels.This paper presents three major cali-bration experiments of the all-sky imager,geometric an-gular calibration,optical calibration,and radiometric calibration,and then infers an algorithm to retrieve rela-tive radiance from the all-sky images.Field experiments show that the related coefficient between retrieved radi-ance and measured radiance is about 0.91.It is feasible to use the algorithm to retrieve radiance from images.The paper sets up a relationship between radiance and the im-age,which is useful for using the all-sky image in nu-merical-simulations that predict more meteorological pa-rameters.展开更多
The relationship between the radiance ratio (radiance at wavelength 450 nm to 650 nm) and aerosol optical depth (AOD) is analyzed in this paper by numerical simulation and a "LUT" (look-up table) approach is t...The relationship between the radiance ratio (radiance at wavelength 450 nm to 650 nm) and aerosol optical depth (AOD) is analyzed in this paper by numerical simulation and a "LUT" (look-up table) approach is then presented for the retrieval of AOD from the radiance ratio. In this LUT approach, the AOD retrieval error depends mainly on the assumption of aerosol types. From the preliminary simulation, a typical error of 15%–20% in AOD obtained from the radiance ratio is estimated, due to neglecting changes in the ground albedo and background atmosphere. At its worst, the AOD error reached a maximum of around 50%, which will be refined in the future. In the latter part of the paper, comparisons are made between AOD from the imager and from the CE-318 sun photometer, both located at Xianghe observatory in Hebei Province (39.75° N, 116.96° E). This field experiment shows that AOD from the imager is highly correlated with AOD from the sun photometer, with a correlation coefficient of 0.95 and an average retrieval error of around 7%. A contrast experiment confirms the feasibility of retrieving AOD from all-sky images, but more analysis and future research are required to improve the accuracy.展开更多
In this paper we use a correlation analysis technique of random pattern to calculation of shift velocity of auroral image. The velocity thus obtained is a kind of apparent 'average' velocity of whole image. in...In this paper we use a correlation analysis technique of random pattern to calculation of shift velocity of auroral image. The velocity thus obtained is a kind of apparent 'average' velocity of whole image. instead of the velocity of some certain points or parts in the auroral pattern. The technique is used to an example of aurora australis recorded at Zhongshang Station of Antarctica in 1997. The typical velocity of the auroral pattern for the studied cases is about 3 km/s.展开更多
文摘BY using all-sky(fish-eye)lens and highly sensitive TV camera,the effective monitoring ra-dius and time resolution of ground aurora observation have now been raised to 600 km and1/30 s(for instance,SIT-TV camera recording in NTSC format).By incorporating high-sen-sitivity imaging device(integrated from image intensifier and CCD(charge coupled device)
基金supported by the national natural science foundation of China (Grant Nos.40505006 and 40775026)
文摘The automatic all-sky imager developed by the Institute of Atmospheric Physics,Chinese Academy of Sciences,provides all-sky visible images in the red,green,and blue channels.This paper presents three major cali-bration experiments of the all-sky imager,geometric an-gular calibration,optical calibration,and radiometric calibration,and then infers an algorithm to retrieve rela-tive radiance from the all-sky images.Field experiments show that the related coefficient between retrieved radi-ance and measured radiance is about 0.91.It is feasible to use the algorithm to retrieve radiance from images.The paper sets up a relationship between radiance and the im-age,which is useful for using the all-sky image in nu-merical-simulations that predict more meteorological pa-rameters.
基金supported bythe National Natural Science Foundation of China (GrantNo. 40500506)
文摘The relationship between the radiance ratio (radiance at wavelength 450 nm to 650 nm) and aerosol optical depth (AOD) is analyzed in this paper by numerical simulation and a "LUT" (look-up table) approach is then presented for the retrieval of AOD from the radiance ratio. In this LUT approach, the AOD retrieval error depends mainly on the assumption of aerosol types. From the preliminary simulation, a typical error of 15%–20% in AOD obtained from the radiance ratio is estimated, due to neglecting changes in the ground albedo and background atmosphere. At its worst, the AOD error reached a maximum of around 50%, which will be refined in the future. In the latter part of the paper, comparisons are made between AOD from the imager and from the CE-318 sun photometer, both located at Xianghe observatory in Hebei Province (39.75° N, 116.96° E). This field experiment shows that AOD from the imager is highly correlated with AOD from the sun photometer, with a correlation coefficient of 0.95 and an average retrieval error of around 7%. A contrast experiment confirms the feasibility of retrieving AOD from all-sky images, but more analysis and future research are required to improve the accuracy.
文摘In this paper we use a correlation analysis technique of random pattern to calculation of shift velocity of auroral image. The velocity thus obtained is a kind of apparent 'average' velocity of whole image. instead of the velocity of some certain points or parts in the auroral pattern. The technique is used to an example of aurora australis recorded at Zhongshang Station of Antarctica in 1997. The typical velocity of the auroral pattern for the studied cases is about 3 km/s.