A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoel...A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoelectron spectroscopy(XPS),high resolution transmission electron microscopy(HRTEM) detection show that high quality AIN nanowires were prepared. Nanostructures including nanorings, nanosprings, nanohelices, chainlike nanowires, six-fold symmetric nanostructure and rod-like structure were successfully obtained by controlling the growth duration and temperature. The morphology evolution was attributed to electrostatic polar charge model and the crystalline lattice structure of AIN.展开更多
GaN and AlN nanowires(NWs) have attracted great interests for the fabrication of novel nano-sized devices. In this paper, the nucleation processes of GaN and AlN NWs grown on Si substrates by molecular beam epitaxy...GaN and AlN nanowires(NWs) have attracted great interests for the fabrication of novel nano-sized devices. In this paper, the nucleation processes of GaN and AlN NWs grown on Si substrates by molecular beam epitaxy(MBE)are investigated. It is found that GaN NWs nucleated on in-situ formed Si3N4 fully release the stress upon the interface between GaN NW and amorphous Si3N4 layer, while AlN NWs nucleated by aluminization process gradually release the stress during growth. Depending on the strain status as well as the migration ability of Ⅲ group adatoms, the different growth kinetics of GaN and AlN NWs result in different NW morphologies, i.e., GaN NWs with uniform radii and AlN NWs with tapered bases.展开更多
The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diamet...The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters, we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions. Through studying the electronic properties of AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at the surface, and this atom becomes an active centre.展开更多
基金Project supported by the Natural Science Foundation of Tianjin,China(No.15JCQNJC03700)the National Natural Science Foundation of China(Nos.51702297)
文摘A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoelectron spectroscopy(XPS),high resolution transmission electron microscopy(HRTEM) detection show that high quality AIN nanowires were prepared. Nanostructures including nanorings, nanosprings, nanohelices, chainlike nanowires, six-fold symmetric nanostructure and rod-like structure were successfully obtained by controlling the growth duration and temperature. The morphology evolution was attributed to electrostatic polar charge model and the crystalline lattice structure of AIN.
基金supported by the National Basic Research Program of China(Grant No.2013CB632804)the National Natural Science Foundation of China(Grant Nos.61176015,61176059,61210014,61321004,and 61307024)the High Technology Research and Development Program of China(Grant No.2012AA050601)
文摘GaN and AlN nanowires(NWs) have attracted great interests for the fabrication of novel nano-sized devices. In this paper, the nucleation processes of GaN and AlN NWs grown on Si substrates by molecular beam epitaxy(MBE)are investigated. It is found that GaN NWs nucleated on in-situ formed Si3N4 fully release the stress upon the interface between GaN NW and amorphous Si3N4 layer, while AlN NWs nucleated by aluminization process gradually release the stress during growth. Depending on the strain status as well as the migration ability of Ⅲ group adatoms, the different growth kinetics of GaN and AlN NWs result in different NW morphologies, i.e., GaN NWs with uniform radii and AlN NWs with tapered bases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074200 and 61176079)the Natural Science Fund of Shaanxi Province,China (Grant No. 2009JM1005)
文摘The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters, we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions. Through studying the electronic properties of AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at the surface, and this atom becomes an active centre.