With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during th...With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.展开更多
A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three...A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.展开更多
In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algo...In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algorithm.In the proposed M-IMM algorithm,a new likelihood function is defined for the sake of updating flight mode probabilities,in which the influences of interacting to residual's mean error are taken into account and the assumption of likelihood function being a zero mean Gaussian function is discarded.Finally,the proposed M-IMM algorithm is applied to the simulation of the aircraft trajectory prediction,and the comparative studies are conducted to existing algorithms.The simulation results indicate the proposed M-IMM algorithm can predict aircraft trajectory more quickly and accurately.展开更多
基金supported by the National Natural Science Foundation of China(62073019)。
文摘With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.
基金Basic Scientific Research Projects of Nanjing University of Aeronautics & Astronautics (NS 2010128)
文摘A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.
基金National Natural Science Foundation of China(No.71401072)Natural Science Foundation of Jiangsu Province,China(No.BK20130814)Fundamental Research Funds for the Central Universities,China(No.NS2013064)
文摘In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algorithm.In the proposed M-IMM algorithm,a new likelihood function is defined for the sake of updating flight mode probabilities,in which the influences of interacting to residual's mean error are taken into account and the assumption of likelihood function being a zero mean Gaussian function is discarded.Finally,the proposed M-IMM algorithm is applied to the simulation of the aircraft trajectory prediction,and the comparative studies are conducted to existing algorithms.The simulation results indicate the proposed M-IMM algorithm can predict aircraft trajectory more quickly and accurately.