Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In ...Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.展开更多
The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow o...The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.展开更多
An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100...An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100 atm.In the van der Waals non-ideal-gas theory,the gas in the air gun can be regarded as an actual gas,and the error is less than 2%.The van der Waals model is established in combination with the quasi-static open thermodynamic system and bubble-motion equation by considering the bubble rise,bubble interaction,and throttling eff ect.The mismatch between the van der Waals and ideal-gas models is related to the pressure.Theoretically,under high-pressure conditions,the van der Waals air-gun model yields results that are closer to the measured results.Marine vertical cables are extended to the seafl oor using steel cables that connect the cement blocks,but the corresponding hydrophones are suspended in the seawater.Thus,noise associated with ships,ocean surges,and coupling problems is avoided,and the signal-to-noise ratio and resolution of marine seismic data are improved.This acquisition method satisfies the conditions of recording air-gun far-fi eld wavelets.According to an actual vertical-cable observation system,the van der Waals air-gun model is used to model the wavelet of different azimuth and take-off angles.The characteristics of the experimental and simulated data demonstrate good agreement,which indicates that the van der Waals method is accurate and reliable.The accuracy of the model is directly related to the resolution,thus aff ecting the resolution ability of the stratum.展开更多
On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adja...On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adjacent fault zones,Pg/Sg travel times at 12 seismic stations for the local earthquakes with ML≥1.5 from 2009-2019 and the Yangbi sequence in May of 2021 were used to invert the three-dimensional(3D)structures for both vP and v_(P)/v_(S).The obtained structure extends deeply to 15 km for area(25°N-26.5°N,99.5°E-101°E)at a horizontal resolution of 10×10 km,and the accuracy of the v_(P) velocity was verified using airgun signals excited by the Binchuan Airgun Transmitting Seismic Station(BATSS).The resulting v_(P) and v^(P)/v_(S) images correlate with existing fault zones and the Yangbi sequence,including:(1)The shallow velocity structure at 0 km agrees with local topography,where the Binchuan basin exhibits low-v_(P) and high-v_(P)/v_(S) values.From 3-15 km,v_(P) and v_(P)/v_(S) show variations,and the boundaries are consistent with the main faults(e.g.,the Weixi-Qiaohou-Weishan,Honghe,and Chenghai faults).(2)The largest foreshock(M_(S)5.6),main-shock(MS6.4),and largest aftershock(M_(S)5.2)occurred near the boundaries where both vP and v_(P)/v_(S) have clear contrasts.(3)Small earthquakes are also concentrated in the transition zone between high-and low-vP and v_(P)/v_(S) anomalies,and are biased toward low-v_(P)/v_(S) zones.(4)Boundaries in v_(P) and v_(P)/v_(S) are observed at 20 km west of the Weixi-Qiaohou-Weishan fault,indicating that there may exist one hidden fault.展开更多
Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets...Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.展开更多
An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an import...An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an important approach to study these characteristics.Compared to the measured wavelet,far-field wavelet simulation based on a traditional bubble-motion equation and ideal gas wavelet model has some disadvantages,such as a greater amplitude and smaller pulse attenuation velocity.Here,we start from the linear acoustic wave equation in the spherical coordinate system to deduce an improved,simpler bubble-motion equation and develop a Van der Waals gas wavelet model based on this equation.Unlike the existing methods,our method considers the high-pressure environment during actual excitation,heat exchange between the bubble and outside water,and change in the air fl ow at the muzzle.The results show that the far-fi eld wavelet simulated using this model is closer to the measured wavelet than that of the ideal gas wavelet model.At the same time,our method has a more succinct equation and a higher calculation effi ciency.展开更多
By using an offshore large volume air-gun seismic source, onshore seismic stations( including mobile stations and permanent stations) and ocean bottom seismometers,a deep seismic exploration experiment was carried out...By using an offshore large volume air-gun seismic source, onshore seismic stations( including mobile stations and permanent stations) and ocean bottom seismometers,a deep seismic exploration experiment was carried out for the first time in the Taiwan Straits. Results show that seismic stations can receive seismic signals from the air-gun arrays of the "YANPING Ⅱ"scientific investigation ship from as far as 280 km away.Tens of thousands of high quality seismic data items were obtained successfully and different types of P-wave seismic phases were identified. A one-dimensional crustal structure model of the survey profile HX9 shows that the crustal structure,which is reflected by Pc and Pm P reflection waves from two velocity discontinuities and basement refraction wave( Pg) constitutes the basic characteristic of the crustal structure in this region. The depths of Conrad discontinuity and Moho discontinuity are respectively16. 0km- 17. 5km and 28. 0km- 29. 5km.展开更多
基金The research was funded under the project of NSFC(Grant number:NSFC40234038)Joint Earthquake Science Foundation,China(Grant No.105108)
文摘Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.
基金sponsored by the National Natural Science Foundation of China (40730318 and 40574019)the key project of social welfare of the Ministry of Science and Technology,PRC(2005DIA3J117) +1 种基金seismic industry research project (200808002)basic scientific research of Institute of Geophysics CEA(DQJB07A01) ,China
文摘The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.
基金This work has been supported by the following:the National Natural Science Foundation of China(No.91958206,91858215)the National Key Research and Development Program Pilot Project(No.2018YFC1405901,2017YFC0307401)+1 种基金the Fundamental Research Funds for the Central Universities(No.201964016)the Marine Geological Survey Program of China Geological Survey(No.DD20190819).
文摘An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100 atm.In the van der Waals non-ideal-gas theory,the gas in the air gun can be regarded as an actual gas,and the error is less than 2%.The van der Waals model is established in combination with the quasi-static open thermodynamic system and bubble-motion equation by considering the bubble rise,bubble interaction,and throttling eff ect.The mismatch between the van der Waals and ideal-gas models is related to the pressure.Theoretically,under high-pressure conditions,the van der Waals air-gun model yields results that are closer to the measured results.Marine vertical cables are extended to the seafl oor using steel cables that connect the cement blocks,but the corresponding hydrophones are suspended in the seawater.Thus,noise associated with ships,ocean surges,and coupling problems is avoided,and the signal-to-noise ratio and resolution of marine seismic data are improved.This acquisition method satisfies the conditions of recording air-gun far-fi eld wavelets.According to an actual vertical-cable observation system,the van der Waals air-gun model is used to model the wavelet of different azimuth and take-off angles.The characteristics of the experimental and simulated data demonstrate good agreement,which indicates that the van der Waals method is accurate and reliable.The accuracy of the model is directly related to the resolution,thus aff ecting the resolution ability of the stratum.
基金supported jointly by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant Nos.DQJB20K36,DQJB19B29,and DQJB20B15)the National Natural Science Foundation of China(Grant Nos.41790462 and 41974069).
文摘On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adjacent fault zones,Pg/Sg travel times at 12 seismic stations for the local earthquakes with ML≥1.5 from 2009-2019 and the Yangbi sequence in May of 2021 were used to invert the three-dimensional(3D)structures for both vP and v_(P)/v_(S).The obtained structure extends deeply to 15 km for area(25°N-26.5°N,99.5°E-101°E)at a horizontal resolution of 10×10 km,and the accuracy of the v_(P) velocity was verified using airgun signals excited by the Binchuan Airgun Transmitting Seismic Station(BATSS).The resulting v_(P) and v^(P)/v_(S) images correlate with existing fault zones and the Yangbi sequence,including:(1)The shallow velocity structure at 0 km agrees with local topography,where the Binchuan basin exhibits low-v_(P) and high-v_(P)/v_(S) values.From 3-15 km,v_(P) and v_(P)/v_(S) show variations,and the boundaries are consistent with the main faults(e.g.,the Weixi-Qiaohou-Weishan,Honghe,and Chenghai faults).(2)The largest foreshock(M_(S)5.6),main-shock(MS6.4),and largest aftershock(M_(S)5.2)occurred near the boundaries where both vP and v_(P)/v_(S) have clear contrasts.(3)Small earthquakes are also concentrated in the transition zone between high-and low-vP and v_(P)/v_(S) anomalies,and are biased toward low-v_(P)/v_(S) zones.(4)Boundaries in v_(P) and v_(P)/v_(S) are observed at 20 km west of the Weixi-Qiaohou-Weishan fault,indicating that there may exist one hidden fault.
基金supported by the Geosciences and Technology Academy of China University of Petroleum(East China)
文摘Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
基金supported by National Natural Science Foundation of China (No. 41674118)
文摘An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an important approach to study these characteristics.Compared to the measured wavelet,far-field wavelet simulation based on a traditional bubble-motion equation and ideal gas wavelet model has some disadvantages,such as a greater amplitude and smaller pulse attenuation velocity.Here,we start from the linear acoustic wave equation in the spherical coordinate system to deduce an improved,simpler bubble-motion equation and develop a Van der Waals gas wavelet model based on this equation.Unlike the existing methods,our method considers the high-pressure environment during actual excitation,heat exchange between the bubble and outside water,and change in the air fl ow at the muzzle.The results show that the far-fi eld wavelet simulated using this model is closer to the measured wavelet than that of the ideal gas wavelet model.At the same time,our method has a more succinct equation and a higher calculation effi ciency.
基金funded by Youth Science and Technology Fund of Earthquake Administration of Fujian Province,China(Y201407)
文摘By using an offshore large volume air-gun seismic source, onshore seismic stations( including mobile stations and permanent stations) and ocean bottom seismometers,a deep seismic exploration experiment was carried out for the first time in the Taiwan Straits. Results show that seismic stations can receive seismic signals from the air-gun arrays of the "YANPING Ⅱ"scientific investigation ship from as far as 280 km away.Tens of thousands of high quality seismic data items were obtained successfully and different types of P-wave seismic phases were identified. A one-dimensional crustal structure model of the survey profile HX9 shows that the crustal structure,which is reflected by Pc and Pm P reflection waves from two velocity discontinuities and basement refraction wave( Pg) constitutes the basic characteristic of the crustal structure in this region. The depths of Conrad discontinuity and Moho discontinuity are respectively16. 0km- 17. 5km and 28. 0km- 29. 5km.