Wastewater treatment center(WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature chara...Wastewater treatment center(WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols,despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared.We detected four of the eleven viruses tested, including human adenovirus(h Ad V),rotavirus, hepatitis A virus(HAV) and Herpes Simplex virus type 1(HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance.展开更多
The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume...The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume sampler, simultaneously. PAS1 successfully collected the entire target SCCPs in the ambient air. Air SCCPs sampled by PAS1 were found be in the linear uptake stage during 181 days of sampling. Passive and active samples showed comparable congener profiles, and the dominant contributors of SCCPs in the two kinds of samples were similar. A significant linear correlation was observed between the total concentration of SCCPs sampled by PAS1 and active sampler in the four seasons. The passive sampling rates of the PAS1 for the gas and particulate phases of SCCPs were measured. The quantitative structure–property relationship of the sampling rate of PAS1(Rair) for gas-phase SCCPs was studied. From the molecular point of view, Rairwas mainly affected by the molecular weight and sub-cooled liquid vapor pressure of SCCPs. In general, SCCPs in the urban air of Dalian mainly existed in gas phase,lower molecular weight SCCPs primarily occurred in the gas phase, whereas higher molecular weight SCCPs were predominately adsorbed or absorbed on airborne particles. The air concentration of SCCPs in the four seasons were different, the correlation of the concentration of SCCPs in the air with the meteorology parameters was conducted. The exposure risk by intake air SCCPs of the residents around the sampling sites was evaluated according to the European risk assessment standards.展开更多
The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of upta...The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of uptake rates and physicochemical properties of adsorbents to predict the uptake rate.However,it is difficult to obtain the uptake rates of different VOCs under different sampling periods,and it is also difficult to obtain the physical parameters of adsorbents accurately and effectively.This study provides a reliable numerical prediction method of diffusive uptake rates of VOCs.The modeling was based on the standard automated thermal desorption(ATD)tubes packed with Tenax TA and the mass transfer process during adsorption.The experimental determinations of toluene uptake rate are carried out to verify the prediction model.Diffusive uptake rates of typical indoor VOCs are obtained from the literature to calibrate the key apparent parameters in the model by statistical regression fitting.The predicted model can provide the VOC diffusive uptake rates under different sampling duration with an average deviation of less than 5%.This study can provide the basis for fast and accurate prediction of diffusive uptake rates for various VOC pollutants in built environments.展开更多
基金funded by the Fondation IUCPQ-J.-D.Bégin-P.-H.Lavoie(2014)Institut de recherche Robert-Sauvéen santéet sécuritédu travail(IRSST)(grant number 2010-050)IRSST.CD was a Fonds de recherche du Québec-Santé(FRQ-S)senior scholar
文摘Wastewater treatment center(WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols,despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared.We detected four of the eleven viruses tested, including human adenovirus(h Ad V),rotavirus, hepatitis A virus(HAV) and Herpes Simplex virus type 1(HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance.
基金supported by the National Natural Science Foundation of China (No. 21577009)
文摘The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume sampler, simultaneously. PAS1 successfully collected the entire target SCCPs in the ambient air. Air SCCPs sampled by PAS1 were found be in the linear uptake stage during 181 days of sampling. Passive and active samples showed comparable congener profiles, and the dominant contributors of SCCPs in the two kinds of samples were similar. A significant linear correlation was observed between the total concentration of SCCPs sampled by PAS1 and active sampler in the four seasons. The passive sampling rates of the PAS1 for the gas and particulate phases of SCCPs were measured. The quantitative structure–property relationship of the sampling rate of PAS1(Rair) for gas-phase SCCPs was studied. From the molecular point of view, Rairwas mainly affected by the molecular weight and sub-cooled liquid vapor pressure of SCCPs. In general, SCCPs in the urban air of Dalian mainly existed in gas phase,lower molecular weight SCCPs primarily occurred in the gas phase, whereas higher molecular weight SCCPs were predominately adsorbed or absorbed on airborne particles. The air concentration of SCCPs in the four seasons were different, the correlation of the concentration of SCCPs in the air with the meteorology parameters was conducted. The exposure risk by intake air SCCPs of the residents around the sampling sites was evaluated according to the European risk assessment standards.
基金financially supported by the National Natural Sci-ence Foundation of China(No.52078269)the special funding from Wuhan Second Ship Design and Research Institute.
文摘The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of uptake rates and physicochemical properties of adsorbents to predict the uptake rate.However,it is difficult to obtain the uptake rates of different VOCs under different sampling periods,and it is also difficult to obtain the physical parameters of adsorbents accurately and effectively.This study provides a reliable numerical prediction method of diffusive uptake rates of VOCs.The modeling was based on the standard automated thermal desorption(ATD)tubes packed with Tenax TA and the mass transfer process during adsorption.The experimental determinations of toluene uptake rate are carried out to verify the prediction model.Diffusive uptake rates of typical indoor VOCs are obtained from the literature to calibrate the key apparent parameters in the model by statistical regression fitting.The predicted model can provide the VOC diffusive uptake rates under different sampling duration with an average deviation of less than 5%.This study can provide the basis for fast and accurate prediction of diffusive uptake rates for various VOC pollutants in built environments.