海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估...海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估算以及海洋环流、生物泵和海洋生态在海洋碳循环中的作用 ,并对该研究领域的发展趋势进行了总结。展开更多
Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST withi...Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2-3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed.展开更多
The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (...The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). The results of the coupled integration show that the climate drift has been controlled successfully. Analyses on the responses of ocean circulation to the changes of surface fresh water or salinity forcing show that the ocean spin-up stage under flux condition for salinity is the key to the implementation of air-sea fresh water flux coupling. This study also demonstrates that the Modified—Monthly—Flux—Anomaly coupling scheme (MMFA) brought forward by Yu and Zhang (1998) is suitable not only for daily air—sea heat flux coupling but also for daily fresh water flux coupling. Key words Fresh water flux - Air-sea coupling - Thermohaline circulation This work was co-supported by the National Key Project (Grant No.96-908-02-03), the Excellent National Key Laboratory Research Project (Grant No.49823002) and Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua? for “Validation of Coupled Climate Models”.展开更多
It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the t...It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.展开更多
文摘海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估算以及海洋环流、生物泵和海洋生态在海洋碳循环中的作用 ,并对该研究领域的发展趋势进行了总结。
基金Supported by the National Natural Science Foundation of China(41175090 and 40830958)National High Technology Research and Development(863)Program of China(2012AA091801)
文摘Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2-3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed.
文摘The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). The results of the coupled integration show that the climate drift has been controlled successfully. Analyses on the responses of ocean circulation to the changes of surface fresh water or salinity forcing show that the ocean spin-up stage under flux condition for salinity is the key to the implementation of air-sea fresh water flux coupling. This study also demonstrates that the Modified—Monthly—Flux—Anomaly coupling scheme (MMFA) brought forward by Yu and Zhang (1998) is suitable not only for daily air—sea heat flux coupling but also for daily fresh water flux coupling. Key words Fresh water flux - Air-sea coupling - Thermohaline circulation This work was co-supported by the National Key Project (Grant No.96-908-02-03), the Excellent National Key Laboratory Research Project (Grant No.49823002) and Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua? for “Validation of Coupled Climate Models”.
文摘It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.