Solar Aided Power Generation(SAPG)is the most efficient and economic ways to hybridise solar thermal energy and a fossil fuel fired regenerative Rankine cycle(RRC)power plant for power generation purpose.In such an SA...Solar Aided Power Generation(SAPG)is the most efficient and economic ways to hybridise solar thermal energy and a fossil fuel fired regenerative Rankine cycle(RRC)power plant for power generation purpose.In such an SAPG plant,the solar thermal energy is used to displace the extraction steam by preheating the feedwater to the boiler.The displaced/saved extraction steam can,therefore,expand further in the steam turbine to generate power.The research and development of the SAPG technology started in the 1990s.This paper is trying to reviews and summarises the progress of research and development of the SAPG plant technology in last almost 30 or so years,including the technical and economic advantages of SAPG over other solar thermal power generation tech-nologies(e.g.solar alone power generation),various modelling techniques used to simulate SAPG perforamnce,impacts of SAPG plant’s configuration,size of solar field and strategies to adjust mass flow rate of extraction steam on the plant perforamnce,exergy analysis of SAPG plant and operation strategies to maximise plant’s economic returns etc.In addition,the directions for future R&D about SAPG technology have been pointed/proposed in this paper.展开更多
Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,...Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.展开更多
This study proposes a graph theory based method for generating three-dimensional architectural layouts on the target of creating space that provides rich perceptual experience.The proposed approach incorporates the de...This study proposes a graph theory based method for generating three-dimensional architectural layouts on the target of creating space that provides rich perceptual experience.The proposed approach incorporates the decisions of architects in the generation process to improve efficiency and avoid invalid results.Space is interpreted as a combination of volumes adjacent to,intersecting with or containing each other and is represented by a graph with nodes and edges.The study first generates an orthogonal orientation digraph(OODG),which denotes the relative positions of spaces and provides options for users to decide whether to continue generating the layout.Based on a given OODG,a combination of connected volumes is generated.The generation results show that the proposed method can generate space providing a rich experience when relations between volumes are properly set.展开更多
In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat...In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat to replace a part or all of the extracted steam in one or more preheating stages. The performance of an SAPG plant with different replacements is investigated in this study by using specific consumption theory(SCT). Fuel-specific and cost-specific consumption models for SAPG plants are built based on the SCT. A typical 330 MW coal-fired power plant is used as the study case. The performance of the SAPG plant in terms of specific consumption, with steam obtained from the first through the eighth(except for the fourth) stages of extraction replaced by solar heat, is compared with that of the reference coal-fired power plant. The fuel-specific consumption of the SAPG plant is determined to be lower than that of the reference coal-fired power plant. The fuel-specific consumption accrual distribution in SAPG plants is used to assess the effect of each individual replacement. Effective strategies to reduce the specific costs of the SAPG and coal-fired power plants are proposed based on the results of this study.展开更多
For an SOI-FPGA (silicon-on-insulator field programmable gate arrays) (VS1000) fabricated with 0.5 ttm SOI-CMOS (silicon-on-insulator complementary-metal-oxide-semiconductor) process, a complete integrated platf...For an SOI-FPGA (silicon-on-insulator field programmable gate arrays) (VS1000) fabricated with 0.5 ttm SOI-CMOS (silicon-on-insulator complementary-metal-oxide-semiconductor) process, a complete integrated platform of FPGA computer-aided design (CAD) toolset (VDK) is developed, which can convert the Verilog HDL (hardware description language) description into a bitstream and finally download it into an FPGA. Experiments and testing verify that this FPGA CAD works well and efficiently.展开更多
基金The authors gratefully acknowledge the support of the National Nat-ural Science Foundation of China(Grant no.51875332).
文摘Solar Aided Power Generation(SAPG)is the most efficient and economic ways to hybridise solar thermal energy and a fossil fuel fired regenerative Rankine cycle(RRC)power plant for power generation purpose.In such an SAPG plant,the solar thermal energy is used to displace the extraction steam by preheating the feedwater to the boiler.The displaced/saved extraction steam can,therefore,expand further in the steam turbine to generate power.The research and development of the SAPG technology started in the 1990s.This paper is trying to reviews and summarises the progress of research and development of the SAPG plant technology in last almost 30 or so years,including the technical and economic advantages of SAPG over other solar thermal power generation tech-nologies(e.g.solar alone power generation),various modelling techniques used to simulate SAPG perforamnce,impacts of SAPG plant’s configuration,size of solar field and strategies to adjust mass flow rate of extraction steam on the plant perforamnce,exergy analysis of SAPG plant and operation strategies to maximise plant’s economic returns etc.In addition,the directions for future R&D about SAPG technology have been pointed/proposed in this paper.
基金Financial supports from the National Natural Science Foundation of China(5210060338)National Natural Science Foundation of China(Grant No.52293414)+2 种基金Jiangsu Natural Science Foundation(BK20200731)Science and Technology Program of China Huadian Corporation(CHDKJ22-01-23)Jiangsu graduate research and practice innovation project(18120000312321)。
文摘Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.
基金the JPI Urban Europe and the National Natural Science Foundation of China(NSFCJPI_UE)(grant number 72361137008).
文摘This study proposes a graph theory based method for generating three-dimensional architectural layouts on the target of creating space that provides rich perceptual experience.The proposed approach incorporates the decisions of architects in the generation process to improve efficiency and avoid invalid results.Space is interpreted as a combination of volumes adjacent to,intersecting with or containing each other and is represented by a graph with nodes and edges.The study first generates an orthogonal orientation digraph(OODG),which denotes the relative positions of spaces and provides options for users to decide whether to continue generating the layout.Based on a given OODG,a combination of connected volumes is generated.The generation results show that the proposed method can generate space providing a rich experience when relations between volumes are properly set.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2015CB251505)the National Natural Science Foundation of China(Grant No.51206049)+2 种基金the National Hi-Tech Research and Development Program of China("863"Project)(2012AA050604)the 111 Project(Grant No.B12034)the Fundamental Research Funds for the Central Universities(Grant No.2014XS29)
文摘In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat to replace a part or all of the extracted steam in one or more preheating stages. The performance of an SAPG plant with different replacements is investigated in this study by using specific consumption theory(SCT). Fuel-specific and cost-specific consumption models for SAPG plants are built based on the SCT. A typical 330 MW coal-fired power plant is used as the study case. The performance of the SAPG plant in terms of specific consumption, with steam obtained from the first through the eighth(except for the fourth) stages of extraction replaced by solar heat, is compared with that of the reference coal-fired power plant. The fuel-specific consumption of the SAPG plant is determined to be lower than that of the reference coal-fired power plant. The fuel-specific consumption accrual distribution in SAPG plants is used to assess the effect of each individual replacement. Effective strategies to reduce the specific costs of the SAPG and coal-fired power plants are proposed based on the results of this study.
文摘For an SOI-FPGA (silicon-on-insulator field programmable gate arrays) (VS1000) fabricated with 0.5 ttm SOI-CMOS (silicon-on-insulator complementary-metal-oxide-semiconductor) process, a complete integrated platform of FPGA computer-aided design (CAD) toolset (VDK) is developed, which can convert the Verilog HDL (hardware description language) description into a bitstream and finally download it into an FPGA. Experiments and testing verify that this FPGA CAD works well and efficiently.