Constructing of heterojunction was identified as a feasible way to improve photocatalytic activity of pho-tocatalyst.In this work,a n-p type Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction was successfully prepared for ...Constructing of heterojunction was identified as a feasible way to improve photocatalytic activity of pho-tocatalyst.In this work,a n-p type Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction was successfully prepared for organic pollutants degradation.This Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction exhibited much higher pho-tocatalytic activity towards Rhodamine B(92.24%,expose to visible light for 60 min),norfloxacin(81.73%,expose to visible light for 90 min)and levofloxacin(87.46%,expose to visible light for 90 min)than pure Bi_(2)WO_(6)and pure AgInS_(2).Toxicity analysis indicated the low environmental toxicity of Rhodamine B degradation intermediates for Rye seeds and Sudangrass seeds germination and growth.Mechanism study displayed that AgInS_(2)and Bi_(2)WO_(6)work as the primary photocatalyst to form·O_(2)−and ·OH,respectively.The improved photocatalytic activity of the Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction was due to the im-proved light response range and intensified carrier separation capability.Additionally,a S-scheme charge transfer mechanism including multiple charge transfer channels was proposed.This work could provide an effective strategy for organic pollutants degradation in wastewater.展开更多
Aqueous phase synthesized ternary I-III-VI_(2) Quantum dots(QDs)are getting more and more attention in biology researches,for their good biocompatibility and easy-to-adjust fluorescence properties.However,the quantum ...Aqueous phase synthesized ternary I-III-VI_(2) Quantum dots(QDs)are getting more and more attention in biology researches,for their good biocompatibility and easy-to-adjust fluorescence properties.However,the quantum yield(QY)of these aqueous phase synthesized QDs are often pretty low,which seriously hindered their further applications in this field.In general,the ripening of the QDs helps to enhance their QY,closely related to the ripening temperature.But it is still hard to precisely control the fluorescence performance of the QDs products,due to the difficulties in precise temperature control and cumbersome temperature adjusting operations in batch reactors.Here we proposed an integrated droplet microfluidic chip for the automated and successive AgInS_(2)QDs synthesis and ripening,with both temperatures controlled independently,precisely but easily.Taking advantage of the space-time transformation of the droplet microfluidic chips,the suitable temperature combination for Ag In S_(2)QDs synthesis and ripening was studied,and the high-performance AgInS_(2)QDs were obtained.In addition,the reason for the decrease of QY of AgInS_(2)QDs at higher ripening temperature was also explored.展开更多
Mesenchymal stem cells(MSCs)hold great promise in regenerative medicine and received overwhelm-ing concerns to promote their therapeutic effects.Owing to the shortage of MSCs-specific biomarkers,bimodal imaging nanopr...Mesenchymal stem cells(MSCs)hold great promise in regenerative medicine and received overwhelm-ing concerns to promote their therapeutic effects.Owing to the shortage of MSCs-specific biomarkers,bimodal imaging nanoprobes with integrated complementary information are of great importance in ameliorating the efficacy of MSCs terminal tracking.In this study,a noninvasive dual-mode imaging nanoprobe with enhanced detection sensitivity and spatial resolution based on alloyed Gd:AgInS_(2)/ZnS quantum dots(QDs)was first fabricated through a microwave-assisted heating method.The QDs with red emissive fluorescence exhibit excellent biocompatibility in MSCs under a confocal microscope.As for magnetic resonance imaging(MRI),the longitudinal relaxation rate of 11.1420 mM^(-1) S^(-1) of Gd:AgInS_(2)/ZnS QDs was achieved,which was 1.7 times higher than that of commercial MRI contrast agent(6.4667 mM^(-1) S^(-1)).Furthermore,the cellular internalization of Gd:AgInS_(2)/ZnS QDs exerts no significant effect on the adipogenesis of MSCs and is conducive to the observation of further adipogenic differentiation.Our work helps to verify the promising prospect to develop a bimodal nanoprobe of fluorescence/MRI based on Gd:AgInS_(2)/ZnS QDs,which could monitor the differentiation and migration of MSCs for further therapeu-tic approach.展开更多
Nanowires(NWs)and self-assemble nanostructures made of chalcogenide semiconductor nanocrystals(NCs)are of great interests to the fundamental studies and practical applications.In this study,we reported a seeded-mediat...Nanowires(NWs)and self-assemble nanostructures made of chalcogenide semiconductor nanocrystals(NCs)are of great interests to the fundamental studies and practical applications.In this study,we reported a seeded-mediated growth of AgInS_(2)NWs and their intriguing self-assembly nanostructures with fingerprint-like shape.The key to the formation and self-assembly of AgInS_(2)NWs was the presence of In-S species that was a type of molecular metal chalcogenide complexes,serving as specific inorganic ligands for the growth of NWs and cross-linker molecules for the self-assembly of fingerprint-like nanostructures.Systematic studies were carried out to investigate the reaction factors,including the thermodynamics,amount and type of In precursors,and 1-dodecanethiol usage,to the success of the desired products.展开更多
For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on b...For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.展开更多
基金supported by the Specialized Research Fund of Education Department of Shaanxi Province(No.22JY015)the College Students Innovation and Entrepreneurship Plan Training Program(No.S202211396006).
文摘Constructing of heterojunction was identified as a feasible way to improve photocatalytic activity of pho-tocatalyst.In this work,a n-p type Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction was successfully prepared for organic pollutants degradation.This Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction exhibited much higher pho-tocatalytic activity towards Rhodamine B(92.24%,expose to visible light for 60 min),norfloxacin(81.73%,expose to visible light for 90 min)and levofloxacin(87.46%,expose to visible light for 90 min)than pure Bi_(2)WO_(6)and pure AgInS_(2).Toxicity analysis indicated the low environmental toxicity of Rhodamine B degradation intermediates for Rye seeds and Sudangrass seeds germination and growth.Mechanism study displayed that AgInS_(2)and Bi_(2)WO_(6)work as the primary photocatalyst to form·O_(2)−and ·OH,respectively.The improved photocatalytic activity of the Bi_(2)WO_(6)/AgInS_(2)S-scheme heterojunction was due to the im-proved light response range and intensified carrier separation capability.Additionally,a S-scheme charge transfer mechanism including multiple charge transfer channels was proposed.This work could provide an effective strategy for organic pollutants degradation in wastewater.
基金supported by the National Natural Science Foundation of China(Nos.22074107,21775111)。
文摘Aqueous phase synthesized ternary I-III-VI_(2) Quantum dots(QDs)are getting more and more attention in biology researches,for their good biocompatibility and easy-to-adjust fluorescence properties.However,the quantum yield(QY)of these aqueous phase synthesized QDs are often pretty low,which seriously hindered their further applications in this field.In general,the ripening of the QDs helps to enhance their QY,closely related to the ripening temperature.But it is still hard to precisely control the fluorescence performance of the QDs products,due to the difficulties in precise temperature control and cumbersome temperature adjusting operations in batch reactors.Here we proposed an integrated droplet microfluidic chip for the automated and successive AgInS_(2)QDs synthesis and ripening,with both temperatures controlled independently,precisely but easily.Taking advantage of the space-time transformation of the droplet microfluidic chips,the suitable temperature combination for Ag In S_(2)QDs synthesis and ripening was studied,and the high-performance AgInS_(2)QDs were obtained.In addition,the reason for the decrease of QY of AgInS_(2)QDs at higher ripening temperature was also explored.
基金financially supported by the National Natural Science Foundation of China(NSFC,No.62074044)the Zhongshan-Fudan Joint Innovation Center,and the Jihua Laboratory Projects of Guangdong Province(No.X190111UZ190).
文摘Mesenchymal stem cells(MSCs)hold great promise in regenerative medicine and received overwhelm-ing concerns to promote their therapeutic effects.Owing to the shortage of MSCs-specific biomarkers,bimodal imaging nanoprobes with integrated complementary information are of great importance in ameliorating the efficacy of MSCs terminal tracking.In this study,a noninvasive dual-mode imaging nanoprobe with enhanced detection sensitivity and spatial resolution based on alloyed Gd:AgInS_(2)/ZnS quantum dots(QDs)was first fabricated through a microwave-assisted heating method.The QDs with red emissive fluorescence exhibit excellent biocompatibility in MSCs under a confocal microscope.As for magnetic resonance imaging(MRI),the longitudinal relaxation rate of 11.1420 mM^(-1) S^(-1) of Gd:AgInS_(2)/ZnS QDs was achieved,which was 1.7 times higher than that of commercial MRI contrast agent(6.4667 mM^(-1) S^(-1)).Furthermore,the cellular internalization of Gd:AgInS_(2)/ZnS QDs exerts no significant effect on the adipogenesis of MSCs and is conducive to the observation of further adipogenic differentiation.Our work helps to verify the promising prospect to develop a bimodal nanoprobe of fluorescence/MRI based on Gd:AgInS_(2)/ZnS QDs,which could monitor the differentiation and migration of MSCs for further therapeu-tic approach.
基金supported by the National Natural Science Foundation of China(Nos.61735004 and 61974009)the Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission(No.NERE201903)。
文摘Nanowires(NWs)and self-assemble nanostructures made of chalcogenide semiconductor nanocrystals(NCs)are of great interests to the fundamental studies and practical applications.In this study,we reported a seeded-mediated growth of AgInS_(2)NWs and their intriguing self-assembly nanostructures with fingerprint-like shape.The key to the formation and self-assembly of AgInS_(2)NWs was the presence of In-S species that was a type of molecular metal chalcogenide complexes,serving as specific inorganic ligands for the growth of NWs and cross-linker molecules for the self-assembly of fingerprint-like nanostructures.Systematic studies were carried out to investigate the reaction factors,including the thermodynamics,amount and type of In precursors,and 1-dodecanethiol usage,to the success of the desired products.
基金supported by the National Natural Science Foundation of China (Nos. 21375100, 21775111)the National Science and Technology Major Project of China (No. 2018ZX10301405)
文摘For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.