Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that additi...Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that addition of cerium accelerated alloying of the filler alloy,enlarged supercooled region,caused microstructural refinement and dispersed distribution of intermetallic compounds.It resulted in the increase in microhardness and shear strength of Ag-Cu-Ti filler alloy.At the same time,cerium improved wet...展开更多
CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optica...CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃.展开更多
基金supported by Natural Basic Research Program of China (2009CB724403)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that addition of cerium accelerated alloying of the filler alloy,enlarged supercooled region,caused microstructural refinement and dispersed distribution of intermetallic compounds.It resulted in the increase in microhardness and shear strength of Ag-Cu-Ti filler alloy.At the same time,cerium improved wet...
基金Funded by the National Basic Research Program of China (No.2009CB724403)the National Natural Science Foundation of China (No.51005116)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0837)the NUAA Research Funding (No. 2010236)
文摘CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃.