The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis r...The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.展开更多
Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, ...Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, and fluorescence spectra were also measured to identify the complexes. Elemental analysis showed that the compositions of these complexes were Tb(p-BrBA)3- H20, Tb(p-CIBA)3- 2H20, Tb(p-FBA)3- H20, Tb(o-FBA)3·2H20, Tb(o-CIBA)3· H20, and Tb(o-BrBA)3. H20, respectively. The monodispersed Ag@SiO2 core-shell nanoparticles with silica thicknesses of 10, 15, and 25 nm were success- fully prepared and characterized by transmission-electron microscopy. Fluorescence intensities of the complexes were detected before and after Ag@SiO2core-shell nanoparticles were added; the enhancement times were related to the silica-shell thick- ness. The fluorescence enhancement times were largest when the thickness of the silica shell was 25 nm. The mechanism may be attributed to the localized surface-plasmon resonance. Furthermore, the enhancement effect of terbium fluoro-benzoate complexes was the strongest in these complexes. This result may be attributed to the hydrogen bond between the hydroxyl on the surface of the silica shell and the fluorine atom.展开更多
The properties of resveratrol (3′, 4′, 5-trihydroxystlbene, RST) were for the first time evaluated as a potential substrate for horseradish peroxidase (HRP)-catalyzed fluorogenic reaction. The properties of RST for ...The properties of resveratrol (3′, 4′, 5-trihydroxystlbene, RST) were for the first time evaluated as a potential substrate for horseradish peroxidase (HRP)-catalyzed fluorogenic reaction. The properties of RST for use as fluorogenic substrates for HRP and its application in immunoassays were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA), chavicol and Amplex red by a fluoroimmunosensing method in the use of Schistosomia japonicum antibody (SjAb) as a model analyte. The fluoroimmunosensing device was constructed by dispersing Schistosomia japonicum antigen (SjAg), nano-Ag/SiO2 particles and sol-gel at low temperature. In pH 5.8 Britton-Robinson buffer (B-R), HRP-SjAb conjugates can catalyze the polymerization reaction of RST by H2O2 forming fluorescent dimmers. The increase of the fluorescence intensity of the dimmers product at emission of 462 nm (excitation: 315 nm) is proportional to the concentration of HRP-SjAb binding to the SjAg entrapped in the nano-Ag/SiO2 particles-sol-gel matrix. A competitive binding assay has been used to determine SjAb in rabbit serum with the aid of SjAb labeled with HRP. Substrate RST showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 1.5×10-6-7.3×10-4 g/L and with a detection limit of 1.5×10-6 g/L. The immobilized biocomposites surface could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD = 4.7%). The proposed method has been successfully used for analysis of the rabbit serum sample with satisfactory results.展开更多
利用抗坏血酸对AgNO3进行还原,生成银纳米粒核心,并通过正硅酸四乙酯的水解与聚合反应获得SiO2介孔外壳,制备平均粒径约为.9 nm的Ag SiO2核壳型纳米粒。 Ag SiO2纳米粒可以显著地抑制香石竹镰刀菌的生长,最小抑菌质量浓度为μg/mL...利用抗坏血酸对AgNO3进行还原,生成银纳米粒核心,并通过正硅酸四乙酯的水解与聚合反应获得SiO2介孔外壳,制备平均粒径约为.9 nm的Ag SiO2核壳型纳米粒。 Ag SiO2纳米粒可以显著地抑制香石竹镰刀菌的生长,最小抑菌质量浓度为μg/mL,并可抑制香石竹镰刀菌菌丝生长和孢子分生。 Ag SiO2纳米粒处理~4 h后,菌丝体的过氧化氢酶、总超氧化物歧化酶、过氧化物酶活力增强,提示Ag SiO2纳米粒抗菌机制和活性氧诱导相关。展开更多
基金supported by research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE201127)
文摘The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.
基金supported by the National Natural Science Foundation of China(21161013)the Natural Science Foundation of Inner Mongolia(2011MS0202)the Opening Foundation for Significant Fundamental Research of Inner Mongolia(2010KF03)
文摘Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, and fluorescence spectra were also measured to identify the complexes. Elemental analysis showed that the compositions of these complexes were Tb(p-BrBA)3- H20, Tb(p-CIBA)3- 2H20, Tb(p-FBA)3- H20, Tb(o-FBA)3·2H20, Tb(o-CIBA)3· H20, and Tb(o-BrBA)3. H20, respectively. The monodispersed Ag@SiO2 core-shell nanoparticles with silica thicknesses of 10, 15, and 25 nm were success- fully prepared and characterized by transmission-electron microscopy. Fluorescence intensities of the complexes were detected before and after Ag@SiO2core-shell nanoparticles were added; the enhancement times were related to the silica-shell thick- ness. The fluorescence enhancement times were largest when the thickness of the silica shell was 25 nm. The mechanism may be attributed to the localized surface-plasmon resonance. Furthermore, the enhancement effect of terbium fluoro-benzoate complexes was the strongest in these complexes. This result may be attributed to the hydrogen bond between the hydroxyl on the surface of the silica shell and the fluorine atom.
基金The Project-sponsored by SRF for ROCS,SEMMinistry of Science and Technology(2006DFA52910)the Scientific & Technological Department of Zhejiang(2006R10038)
基金Supported by the Projects of Scientific Research Fund of Hunan Provincial Educa-tion Department of China (Grant Nos. 05B020 and 06C098)
文摘The properties of resveratrol (3′, 4′, 5-trihydroxystlbene, RST) were for the first time evaluated as a potential substrate for horseradish peroxidase (HRP)-catalyzed fluorogenic reaction. The properties of RST for use as fluorogenic substrates for HRP and its application in immunoassays were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA), chavicol and Amplex red by a fluoroimmunosensing method in the use of Schistosomia japonicum antibody (SjAb) as a model analyte. The fluoroimmunosensing device was constructed by dispersing Schistosomia japonicum antigen (SjAg), nano-Ag/SiO2 particles and sol-gel at low temperature. In pH 5.8 Britton-Robinson buffer (B-R), HRP-SjAb conjugates can catalyze the polymerization reaction of RST by H2O2 forming fluorescent dimmers. The increase of the fluorescence intensity of the dimmers product at emission of 462 nm (excitation: 315 nm) is proportional to the concentration of HRP-SjAb binding to the SjAg entrapped in the nano-Ag/SiO2 particles-sol-gel matrix. A competitive binding assay has been used to determine SjAb in rabbit serum with the aid of SjAb labeled with HRP. Substrate RST showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 1.5×10-6-7.3×10-4 g/L and with a detection limit of 1.5×10-6 g/L. The immobilized biocomposites surface could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD = 4.7%). The proposed method has been successfully used for analysis of the rabbit serum sample with satisfactory results.
文摘利用抗坏血酸对AgNO3进行还原,生成银纳米粒核心,并通过正硅酸四乙酯的水解与聚合反应获得SiO2介孔外壳,制备平均粒径约为.9 nm的Ag SiO2核壳型纳米粒。 Ag SiO2纳米粒可以显著地抑制香石竹镰刀菌的生长,最小抑菌质量浓度为μg/mL,并可抑制香石竹镰刀菌菌丝生长和孢子分生。 Ag SiO2纳米粒处理~4 h后,菌丝体的过氧化氢酶、总超氧化物歧化酶、过氧化物酶活力增强,提示Ag SiO2纳米粒抗菌机制和活性氧诱导相关。
基金Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Nation al Natural Science Foundation of China (21372117), Fok Ying Tung Education Foundation (141030), Research Fund for the Doctoral Program