以Bi(NO3)3·5H2O、Na2WO4·2H2O、AgNO3为原料,利用液相沉淀法制备Bi2WO6及Ag掺杂Bi2WO6光催化剂,以亚甲基蓝溶液为目标降解物,对其降解效率进行研究。研究结果表明,当亚甲基蓝溶液的浓度为15 mg/L,体积为50 m L,降解时间3.5 h...以Bi(NO3)3·5H2O、Na2WO4·2H2O、AgNO3为原料,利用液相沉淀法制备Bi2WO6及Ag掺杂Bi2WO6光催化剂,以亚甲基蓝溶液为目标降解物,对其降解效率进行研究。研究结果表明,当亚甲基蓝溶液的浓度为15 mg/L,体积为50 m L,降解时间3.5 h,Bi2WO6降解率仅为55%;当Ag/Bi摩尔比为0.4%时,Ag/Bi2WO6表现出较好的催化性能,相同时间降解率达到97%。展开更多
Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag ...Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.展开更多
文摘以Bi(NO3)3·5H2O、Na2WO4·2H2O、AgNO3为原料,利用液相沉淀法制备Bi2WO6及Ag掺杂Bi2WO6光催化剂,以亚甲基蓝溶液为目标降解物,对其降解效率进行研究。研究结果表明,当亚甲基蓝溶液的浓度为15 mg/L,体积为50 m L,降解时间3.5 h,Bi2WO6降解率仅为55%;当Ag/Bi摩尔比为0.4%时,Ag/Bi2WO6表现出较好的催化性能,相同时间降解率达到97%。
基金supported by the National Natural Science Foundation of China (51102245 and U1232119)the Innovative Research Team of Southwest Petroleum University (2012XJZT002)the Swiss National Science Foundation (SNSF Professorship PP0P2-133483/1)
文摘Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.