Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performanc...Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire(0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles(between 2 and 20 nm),irregular nanoclusters(between 30 and 60 nm), and nanocluster networks(between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting,surface diffusion, Volmer–Weber growth model, coalescence,and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature(750 ℃) due to the sublimation and temperature-dependent characteristic of dewetting process.In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.展开更多
利用电化学沉积的方法在氧化铟锡(ITO,Indium Tin Oxide)导电玻璃表面成功地制备出了形貌均一的银纳米结构.所制备银纳米结构的形貌和密度与前驱体AgNO3的浓度、沉晶种电位、生长电位以及柠檬酸钠的加入均有着重要的关系,只有合理地设...利用电化学沉积的方法在氧化铟锡(ITO,Indium Tin Oxide)导电玻璃表面成功地制备出了形貌均一的银纳米结构.所制备银纳米结构的形貌和密度与前驱体AgNO3的浓度、沉晶种电位、生长电位以及柠檬酸钠的加入均有着重要的关系,只有合理地设置这些参数才能制得形貌和密度均较为理想的银纳米粒子.此外以对巯基苯胺(p-ATP,p-aminothiophe-nol)为探针分子,在633 nm的激光激发下对银纳米结构进行了表面增强拉曼效应(SERS,Sur-face Enhanced Raman Scattering)的研究,结果表明其在SERS领域有着潜在的应用价值.展开更多
基金the National Research Foundation of Korea(no.2011-0030079 and 2016R1A1A1A05005009)the research grant of Kwangwoon University in 2016
文摘Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire(0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles(between 2 and 20 nm),irregular nanoclusters(between 30 and 60 nm), and nanocluster networks(between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting,surface diffusion, Volmer–Weber growth model, coalescence,and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature(750 ℃) due to the sublimation and temperature-dependent characteristic of dewetting process.In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.