为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列...为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
Deep Neural Networks (DNN) are widely utilized due to their outstanding performance, but the susceptibility to adversarial attacks poses significant security risks, making adversarial defense research crucial in the f...Deep Neural Networks (DNN) are widely utilized due to their outstanding performance, but the susceptibility to adversarial attacks poses significant security risks, making adversarial defense research crucial in the field of AI security. Currently, robustness defense techniques for models often rely on adversarial training, a method that tends to only defend against specific types of attacks and lacks strong generalization. In response to this challenge, this paper proposes a black-box defense method based on Image Denoising and Pix2Pix (IDP) technology. This method does not require prior knowledge of the specific attack type and eliminates the need for cumbersome adversarial training. When making predictions on unknown samples, the IDP method first undergoes denoising processing, followed by inputting the processed image into a trained Pix2Pix model for image transformation. Finally, the image generated by Pix2Pix is input into the classification model for prediction. This versatile defense approach demonstrates excellent defensive performance against common attack methods such as FGSM, I-FGSM, DeepFool, and UPSET, showcasing high flexibility and transferability. In summary, the IDP method introduces new perspectives and possibilities for adversarial sample defense, alleviating the limitations of traditional adversarial training methods and enhancing the overall robustness of models.展开更多
文摘为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
文摘Deep Neural Networks (DNN) are widely utilized due to their outstanding performance, but the susceptibility to adversarial attacks poses significant security risks, making adversarial defense research crucial in the field of AI security. Currently, robustness defense techniques for models often rely on adversarial training, a method that tends to only defend against specific types of attacks and lacks strong generalization. In response to this challenge, this paper proposes a black-box defense method based on Image Denoising and Pix2Pix (IDP) technology. This method does not require prior knowledge of the specific attack type and eliminates the need for cumbersome adversarial training. When making predictions on unknown samples, the IDP method first undergoes denoising processing, followed by inputting the processed image into a trained Pix2Pix model for image transformation. Finally, the image generated by Pix2Pix is input into the classification model for prediction. This versatile defense approach demonstrates excellent defensive performance against common attack methods such as FGSM, I-FGSM, DeepFool, and UPSET, showcasing high flexibility and transferability. In summary, the IDP method introduces new perspectives and possibilities for adversarial sample defense, alleviating the limitations of traditional adversarial training methods and enhancing the overall robustness of models.