The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection...An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.展开更多
We studied the foraging processes of wildebeest using an advection-diffusion equation. We equipped the model with data collected between 1999 and 2007 from the Serengeti ecosystem from 18 GPS-collared wildebeest. Resu...We studied the foraging processes of wildebeest using an advection-diffusion equation. We equipped the model with data collected between 1999 and 2007 from the Serengeti ecosystem from 18 GPS-collared wildebeest. Results analysis show that wildebeest foraging behavior can be explained by advective and diffusive parameters in a heterogeneous habitat like the Serengeti ecosystem.展开更多
We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusio...We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The error upper bounds, in which all the constants are specified, consist of three terms: a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual, a diffusive flux estimator where the weights used in the method enter explicitly, and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces. The three estimators can be bounded locally by the approximation error. A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds. For moderate advection, it is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method, while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor. For dominant advection, it is shown, in the spirit of previous work by Verfiirth on continuous finite elements, that the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.展开更多
A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method...A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method of characteristics has been derived, and the favorable accuracy of the method demonstrated. The use of interpolations in time, rather than the more widely used interpolations in space, demonstrates that it generates a much smaller numerical error.展开更多
According to Godunov theorem for numerical calculations of advection equations, there exist no high-er-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy ex...According to Godunov theorem for numerical calculations of advection equations, there exist no high-er-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. In case of advection-diffusion equations, so far there have been not found stable schemes with positive difference coefficients in a family of numerical schemes exceeding the second-order accuracy. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter by using the same stencil number as convemtional third-order shemes such as KAWAMURA and UTOPIA schemes. We extend the present method into multi-dimensional equations. Numerical experiments for linear and nonlinear advection-diffusion equations were performed and the present scheme’s applicability to nonlinear Burger’s equation was confirmed.展开更多
Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model perfor...Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph's rising limb and not to the falling limb. The downstream hydrograph's falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.展开更多
A lattice Boltzmann numerical modeling method was developed to predict skin concentration after topical application of a drug on the skin. The method is based on D2Q9 lattice spaces associated with the Bhatnagar-Gross...A lattice Boltzmann numerical modeling method was developed to predict skin concentration after topical application of a drug on the skin. The method is based on D2Q9 lattice spaces associated with the Bhatnagar-Gross-Krook(BGK) collision term to solve the convection-diffusion equation(CDE). A simulation was carried out in different ranges of the value of bound γ, which is related to skin capillary clearance and the volume of diffusion during a percutaneous absorption process. When a typical drug is used on the skin, the value of γ corresponds to the amount of drug absorbed by the blood and the absorption of the drug added to the skin. The effect of γ was studied for when the region of skin contact is a line segment on the skin surface.展开更多
基金supported in part by the National Basic Research Program (2007CB814906)the National Natural Science Foundation of China (10471103 and 10771158)+2 种基金Social Science Foundation of the Ministry of Education of China (Numerical methods for convertible bonds, 06JA630047)Tianjin Natural Science Foundation (07JCYBJC14300)the National Science Foundation under Grant No. EAR-0934747
文摘This article summarizes our recent work on uniform error estimates for various finite elementmethods for time-dependent advection-diffusion equations.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金The National Key Research and Development Program of China under contract Nos 2022YFC3104804,2021YFC3101501,and 2017YFC1404103the National Programme on Global Change and Air-Sea Interaction of China under contract No.GASI-IPOVAI-04the National Natural Science Foundation of China under contract Nos 41876014,41606039,and 11801402.
文摘An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.
文摘We studied the foraging processes of wildebeest using an advection-diffusion equation. We equipped the model with data collected between 1999 and 2007 from the Serengeti ecosystem from 18 GPS-collared wildebeest. Results analysis show that wildebeest foraging behavior can be explained by advective and diffusive parameters in a heterogeneous habitat like the Serengeti ecosystem.
文摘We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The error upper bounds, in which all the constants are specified, consist of three terms: a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual, a diffusive flux estimator where the weights used in the method enter explicitly, and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces. The three estimators can be bounded locally by the approximation error. A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds. For moderate advection, it is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method, while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor. For dominant advection, it is shown, in the spirit of previous work by Verfiirth on continuous finite elements, that the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.
文摘A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method of characteristics has been derived, and the favorable accuracy of the method demonstrated. The use of interpolations in time, rather than the more widely used interpolations in space, demonstrates that it generates a much smaller numerical error.
文摘According to Godunov theorem for numerical calculations of advection equations, there exist no high-er-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. In case of advection-diffusion equations, so far there have been not found stable schemes with positive difference coefficients in a family of numerical schemes exceeding the second-order accuracy. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter by using the same stencil number as convemtional third-order shemes such as KAWAMURA and UTOPIA schemes. We extend the present method into multi-dimensional equations. Numerical experiments for linear and nonlinear advection-diffusion equations were performed and the present scheme’s applicability to nonlinear Burger’s equation was confirmed.
基金supported by funding from the USDA Forest Service Northern Research Station iTree Spatial Simulation (No. PL-5937)the National Urban and Community Forest Advisory Council iT ree Tool (No. 11-DG-11132544340)The SUNY ESF Department of Environmental Resources Engineering provided computing facilities and logistical support
文摘Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph's rising limb and not to the falling limb. The downstream hydrograph's falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2011-0030013 and 2018R1A2B2007117)
文摘A lattice Boltzmann numerical modeling method was developed to predict skin concentration after topical application of a drug on the skin. The method is based on D2Q9 lattice spaces associated with the Bhatnagar-Gross-Krook(BGK) collision term to solve the convection-diffusion equation(CDE). A simulation was carried out in different ranges of the value of bound γ, which is related to skin capillary clearance and the volume of diffusion during a percutaneous absorption process. When a typical drug is used on the skin, the value of γ corresponds to the amount of drug absorbed by the blood and the absorption of the drug added to the skin. The effect of γ was studied for when the region of skin contact is a line segment on the skin surface.