With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as comp...With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as complex network structure, resource-constrained smart meter, and privacy-sensitive data, it is an especially challenging issue to make AMI secure. Energy theft is one of the most important concerns related to the smart grid implementation. It is estimated that utility companies lose more than S25 billion every year due to energy theft around the world. To address this challenge, in this paper, we discuss the background of AMI and identify major security requirements that AMI should meet. Specifically, an attack tree based threat model is first presented to illustrate the energy-theft behaviors in AMI. Then, we summarize the current AMI energy-theft detection schemes into three categories, i.e., classification-based, state estimation-based, and game theory-based ones, and make extensive comparisons and discussions on them. In order to provide a deep understanding of security vulnerabilities and solutions in AMI and shed light on future research directions, we also explore some open challenges and potential solutions for energy-theft detection.展开更多
The smart grid has been revolutionizing electrical generation and consumption through a two-way flow of power and information. As an important information source from the demand side, Advanced Metering Infrastructure ...The smart grid has been revolutionizing electrical generation and consumption through a two-way flow of power and information. As an important information source from the demand side, Advanced Metering Infrastructure (AMI) has gained increasing popularity all over the world. By making full use of the data gathered by AMI, stakeholders of the electrical industry can have a better understanding of electrical consumption behavior. This is a significant strategy to improve operation efficiency and enhance power grid reliability. To implement this strategy, researchers have explored many data mining techniques for load profiling. This paper performs a state-of-the-art, comprehensive review of these data mining techniques from the perspectives of different technical approaches including direct clustering, indirect clustering, clustering evaluation criteria, and customer segmentation. On this basis, the prospects for implementing load profiling to demand response applications, price-based and incentivebased, are further summarized. Finally, challenges and opportunities of load profiling techniques in future power industry, especially in a demand response world, are discussed.展开更多
基金supported by China Scholarship Councilthe National Natural Science Foundation of China (Nos. 61170261 and 61202369)NSERC,Canada
文摘With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as complex network structure, resource-constrained smart meter, and privacy-sensitive data, it is an especially challenging issue to make AMI secure. Energy theft is one of the most important concerns related to the smart grid implementation. It is estimated that utility companies lose more than S25 billion every year due to energy theft around the world. To address this challenge, in this paper, we discuss the background of AMI and identify major security requirements that AMI should meet. Specifically, an attack tree based threat model is first presented to illustrate the energy-theft behaviors in AMI. Then, we summarize the current AMI energy-theft detection schemes into three categories, i.e., classification-based, state estimation-based, and game theory-based ones, and make extensive comparisons and discussions on them. In order to provide a deep understanding of security vulnerabilities and solutions in AMI and shed light on future research directions, we also explore some open challenges and potential solutions for energy-theft detection.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 51325702)
文摘The smart grid has been revolutionizing electrical generation and consumption through a two-way flow of power and information. As an important information source from the demand side, Advanced Metering Infrastructure (AMI) has gained increasing popularity all over the world. By making full use of the data gathered by AMI, stakeholders of the electrical industry can have a better understanding of electrical consumption behavior. This is a significant strategy to improve operation efficiency and enhance power grid reliability. To implement this strategy, researchers have explored many data mining techniques for load profiling. This paper performs a state-of-the-art, comprehensive review of these data mining techniques from the perspectives of different technical approaches including direct clustering, indirect clustering, clustering evaluation criteria, and customer segmentation. On this basis, the prospects for implementing load profiling to demand response applications, price-based and incentivebased, are further summarized. Finally, challenges and opportunities of load profiling techniques in future power industry, especially in a demand response world, are discussed.