期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度特征融合的轻量级异常行为检测模型
1
作者
王巍
张世泽
+1 位作者
魏忠诚
赵晓宁
《电脑与信息技术》
2023年第5期16-19,共4页
针对数据量复杂的视频监控场景下现有的异常行为检测模型对小目标异常行为的准确率不高、计算量复杂的问题,本文提出一种基于多尺度特征融合的轻量级异常行为检测模型。首先将YoloV4主干网络替换为MobileNet网络,有效减少模型的参数总...
针对数据量复杂的视频监控场景下现有的异常行为检测模型对小目标异常行为的准确率不高、计算量复杂的问题,本文提出一种基于多尺度特征融合的轻量级异常行为检测模型。首先将YoloV4主干网络替换为MobileNet网络,有效减少模型的参数总量与计算量;其次在MobileNet的逆残差结构中嵌入自注意力机制加强获取全局语义信息的能力;接着使用自适应空间特征融合结构ASFF(Adaptively Spatial Feature Fusion)优化PANet(Path Aggregation Network)网络结构,使模型获得不同尺度特征数据的权重融合,进一步有效利用浅层特征和深层特征,提高对小尺度目标异常行为的检测精度。实验结果证明,文章提出的模型检测在小目标上平均精度均值达到了85.35%,更适合于视频监控场景下的异常行为检测。
展开更多
关键词
异常行为检测
MobileNet网络
逆残差结构
自适应空间多尺度特征融合
自注意力机制
下载PDF
职称材料
题名
基于多尺度特征融合的轻量级异常行为检测模型
1
作者
王巍
张世泽
魏忠诚
赵晓宁
机构
河北工程大学
江南大学
出处
《电脑与信息技术》
2023年第5期16-19,共4页
基金
河北省高等学校科学技术研究项目(项目编号:QN2020193,ZD2020171)。
文摘
针对数据量复杂的视频监控场景下现有的异常行为检测模型对小目标异常行为的准确率不高、计算量复杂的问题,本文提出一种基于多尺度特征融合的轻量级异常行为检测模型。首先将YoloV4主干网络替换为MobileNet网络,有效减少模型的参数总量与计算量;其次在MobileNet的逆残差结构中嵌入自注意力机制加强获取全局语义信息的能力;接着使用自适应空间特征融合结构ASFF(Adaptively Spatial Feature Fusion)优化PANet(Path Aggregation Network)网络结构,使模型获得不同尺度特征数据的权重融合,进一步有效利用浅层特征和深层特征,提高对小尺度目标异常行为的检测精度。实验结果证明,文章提出的模型检测在小目标上平均精度均值达到了85.35%,更适合于视频监控场景下的异常行为检测。
关键词
异常行为检测
MobileNet网络
逆残差结构
自适应空间多尺度特征融合
自注意力机制
Keywords
Abnormal
behavior
detection
MobileNet
network
Inverse
residual
structure
adaptive
spatial
multi
-
scale
feature
fusion
Self-attention
mechanism
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度特征融合的轻量级异常行为检测模型
王巍
张世泽
魏忠诚
赵晓宁
《电脑与信息技术》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部