期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
An Intelligent System for Real-Time Condition Monitoring of Tower Cranes 被引量:1
1
作者 Aaron K. Adik Wilson Wang 《Intelligent Control and Automation》 2019年第4期155-167,共13页
Reliability and safety are major issues in tower crane applications. A new adaptive neurofuzzy system is developed in this work for real-time health condition monitoring of tower cranes, especially for hoist gearboxes... Reliability and safety are major issues in tower crane applications. A new adaptive neurofuzzy system is developed in this work for real-time health condition monitoring of tower cranes, especially for hoist gearboxes. Vibration signals are measured using a wireless smart sensor system. Fault detection is performed gear-by-gear in the gearbox. A new diagnostic classifier is proposed to integrate strengths of several signal processing techniques for fault detection. A hybrid machine learning method is proposed to facilitate implementation and improve training convergence. The effectiveness of the developed monitoring system is verified by experimental tests. 展开更多
关键词 adaptive neuro-fuzzy systems MACHINE Learning DIAGNOSTICS PATTERN Classification TOWER CRANES Smart Sensors
下载PDF
Adaptive Neuro-Fuzzy Logic System for Heavy Metal Sorption in Aquatic Environments
2
作者 Ahmad Qasaimeh Mohammad Abdallah Falah Bani Hani 《Journal of Water Resource and Protection》 2012年第5期277-284,共8页
In this paper, adaptive neuro-fuzzy inference system ANFIS is used to assess conditions required for aquatic systems to serve as a sink for metal removal;it is used to generate information on the behavior of heavy met... In this paper, adaptive neuro-fuzzy inference system ANFIS is used to assess conditions required for aquatic systems to serve as a sink for metal removal;it is used to generate information on the behavior of heavy metals (mercury) in water in relation to its uptake by bio-species (e.g. bacteria, fungi, algae, etc.) and adsorption to sediments. The approach of this research entails training fuzzy inference system by neural networks. The process is useful when there is interrelation between variables and no enough experience about mercury behavior, furthermore it is easy and fast process. Experimental work on mercury removal in wetlands for specific environmental conditions was previously conducted in bench scale at Concordia University laboratories. Fuzzy inference system FIS is constructed comprising knowledge base (i.e. premises and conclusions), fuzzy sets, and fuzzy rules. Knowledge base and rules are adapted and trained by neural networks, and then tested. ANFIS simulates and predicts mercury speciation for biological uptake and mercury adsorption to sediments. Modeling of mercury bioavailability for bio-species and adsorption to sediments shows strong correlation of more than 98% between simulation results and experimental data. The fuzzy models obtained are used to simulate and forecast further information on mercury partitioning to species and sediments. The findings of this research give information about metal removal by aquatic systems and their efficiency. 展开更多
关键词 adaptive neuro-fuzzy Simulation HEAVY Metal SORPTION AQUATIC systems FORECAST
下载PDF
自适应神经模糊推理系统的参数优化方法 被引量:9
3
作者 秦炎峰 陈铁军 《微计算机信息》 北大核心 2008年第18期222-224,共3页
自适应神经模糊推理系统(ANFIS)将模糊推理系统(FIS)中的模糊逻辑规则及隶属度函数参数通过神经网络的自学习来整定,自动产生模糊规则和调整隶属度函数,解决了模糊控制系统中模糊推理规则主要根据专家经验设计、缺乏自学习能力、控制精... 自适应神经模糊推理系统(ANFIS)将模糊推理系统(FIS)中的模糊逻辑规则及隶属度函数参数通过神经网络的自学习来整定,自动产生模糊规则和调整隶属度函数,解决了模糊控制系统中模糊推理规则主要根据专家经验设计、缺乏自学习能力、控制精度不高等问题。而在建立一个初始系统进行训练时,其训练次数、隶属度函数的数目及类型都是待定的,这三个参数的选择直接影响系统训练后的效果,其确定方法值得研究。本文应用自适应神经模糊推理系统对一个典型系统进行建模仿真,并提出三个参数的寻优方法。 展开更多
关键词 模糊系统 自适应神经模糊推理系统 隶属度函数
下载PDF
基于EMD小波包和ANFIS的滚动轴承故障诊断 被引量:9
4
作者 张霆 张友鹏 《计算机工程与应用》 CSCD 2013年第21期230-234,共5页
为了有效识别出滚动轴承的内圈故障、外圈故障、滚动体故障三种故障类型,提出一种基于经验模态分解EMD的小波包去噪和自适应神经模糊推理系统ANFIS的诊断方法。对故障信号进行去噪预处理,对已处理的信号利用ANFIS进行故障识别。结果表明... 为了有效识别出滚动轴承的内圈故障、外圈故障、滚动体故障三种故障类型,提出一种基于经验模态分解EMD的小波包去噪和自适应神经模糊推理系统ANFIS的诊断方法。对故障信号进行去噪预处理,对已处理的信号利用ANFIS进行故障识别。结果表明,采用基于EMD的小波包去噪方法能有效地提高信噪比,在去噪的基础上,采用ANFIS进行故障诊断,诊断结果的误差低,能很好地识别出上述三种故障类型。 展开更多
关键词 滚动轴承 经验模态分解 小波包去噪 自适应神经模糊推理系统 故障诊断
下载PDF
基于减法聚类和自适应神经模糊推理系统的递阶模糊系统的设计 被引量:5
5
作者 张阿卜 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第3期415-418,共4页
提出了一种设计递阶模糊系统的简易而有效的方法.在得到一个单级模糊系统的基础上,用灵敏度分析法对每一个输入变量的重要性进行排序,从而确定每一级子系统的输入变量.利用减法聚类和自适应神经 模糊推理系统逐级对子系统进行训练.所得... 提出了一种设计递阶模糊系统的简易而有效的方法.在得到一个单级模糊系统的基础上,用灵敏度分析法对每一个输入变量的重要性进行排序,从而确定每一级子系统的输入变量.利用减法聚类和自适应神经 模糊推理系统逐级对子系统进行训练.所得到的递阶模糊系统可进一步得到简化.仿真实例证实了设计方法的有效性. 展开更多
关键词 递阶模糊系统 减法聚类 输入选择 自适应神经-模糊推理系统(ANFIS)
下载PDF
ANFIS-based Sensor Fusion System of Sit-to-stand for Elderly People Assistive Device Protocols 被引量:5
6
作者 Omar Salah Ahmed A.Ramadan +3 位作者 Salvatore Sessa Ahmed Abo Ismail Makasatsu Fujie Atsuo Takanishi 《International Journal of Automation and computing》 EI CSCD 2013年第5期405-413,共9页
This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several e... This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient. 展开更多
关键词 adaptive neuro-fuzzy inference systems(ANFIS) sensor fusion assistive technologies sit-to-stand motion analysis inertial measurement units
原文传递
Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO 被引量:1
7
作者 Ali Darvish FALEHI Ali MOSALLANEJAD 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第3期394-409,共16页
Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic genera... Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC. 展开更多
关键词 Hierarchical adaptive neuro-fuzzy inference system controller(HANFISC) Thyristor-controlled series compensator(TCSC) Automatic generation control(AGC) Multi-objective particle swarm optimization(MOPSO) Power system dynamic stability Interconnected multi-source power systems
原文传递
基于蚁群优化ANFIS模型的建筑室温状态和能耗预测 被引量:2
8
作者 徐超 于忠清 李劲华 《计算机应用与软件》 北大核心 2023年第6期63-69,共7页
建筑采暖、通风和空调(HVAC)系统占据了超过一半的建筑能耗,系统的运行状态和能耗预测是节约建筑能耗、确保热舒适性的关键。提出一种基于蚁群优化算法(ACO)优化的自适应神经网络模糊推理系统(ANFIS),对暖通空调中空气处理单元(AHU)的... 建筑采暖、通风和空调(HVAC)系统占据了超过一半的建筑能耗,系统的运行状态和能耗预测是节约建筑能耗、确保热舒适性的关键。提出一种基于蚁群优化算法(ACO)优化的自适应神经网络模糊推理系统(ANFIS),对暖通空调中空气处理单元(AHU)的状态和能耗进行建模和预测。通过蚁群优化算法和最小二乘法对ANFIS网络训练过程中前提参数和结论参数的寻优,进一步提高ANFIS方法对于HVAC等非线性系统建模的速度和精度。与随机森林(RF)、支持向量机(SVM)、BP神经网络和一般ANFIS等模型进行比较,验证了该方法具有更好的预测效果。 展开更多
关键词 建筑能耗 暖通空调 自适应神经网络模糊推理系统 蚁群优化算法 非线性系统建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部