期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ada_Nesterov动量法——一种具有自适应学习率的Nesterov动量法 被引量:5
1
作者 贾熹滨 史佳帅 《计算机科学与应用》 2019年第2期351-358,共8页
Nesterov动量法可以很好地改进梯度下降方向,但是其所有参数都具有相同的学习率,并且学习率需要人为设定。Adadelta算法可以自适应学习率,并且每维参数具有独立的学习率。因此,本文首先基于Adadelta算法推导出每一维的学习率公式,其次... Nesterov动量法可以很好地改进梯度下降方向,但是其所有参数都具有相同的学习率,并且学习率需要人为设定。Adadelta算法可以自适应学习率,并且每维参数具有独立的学习率。因此,本文首先基于Adadelta算法推导出每一维的学习率公式,其次将其带入Nesterov动量法中,得到了Ada_Nesterov动量法。为了验证提出的Ada_Nesterov动量法,本文设计了两个实验。实验结果表明:动量参数0.5时,Ada_Nesterov动量法在VggNet_16神经网络架构上,基于CIFAR_100数据集的验证准确率最高,损失最小,收敛速度最快。即Ada_Nesterov动量法改进了Nesterov动量法,具有自适应学习率。 展开更多
关键词 nesterov动量 adadelta算 ada_nesterov动量 自适应学习率
下载PDF
一种基于集成卷积神经网络的SAR图像目标识别算法 被引量:1
2
作者 李汪华 张贞凯 《电讯技术》 北大核心 2023年第12期1918-1924,共7页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出了一种基于集成卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先对原始数据集进行数据增强的预处理操作,以扩充训练样本;接着通过重... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出了一种基于集成卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先对原始数据集进行数据增强的预处理操作,以扩充训练样本;接着通过重采样的方法从训练样本中获取不同的训练子集,并在训练各基分类器时引入Dropout和Padding操作,有效增强了网络泛化能力;然后采用Adadelta算法与Nesterov动量法结合的思想来优化网络,提高了网络的收敛速度和识别精度;最后采用相对多数投票法对基分类器的分类结果进行集成。在MSTAR数据集上进行的实验结果表明,集成后的模型识别准确率达到99.30%,识别性能优于单个卷积神经网络,具有较强的泛化能力和较好的稳健性。 展开更多
关键词 雷达目标识别 合成孔径雷达(SAR) 卷积神经网络(CNN) ada_nesterov动量 网络集成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部