In this paper,a composite adaptive fault-tolerant control strategy is proposed for a quadrotor unmanned aerial vehicle(UAV)to simultaneously compensate actuator faults,model uncertainties and external disturbances.By ...In this paper,a composite adaptive fault-tolerant control strategy is proposed for a quadrotor unmanned aerial vehicle(UAV)to simultaneously compensate actuator faults,model uncertainties and external disturbances.By assuming knowledge of the bounds on external disturbances,a baseline sliding mode control is first designed to achieve the desired system tracking performance and retain insensitive to disturbances.Then,regarding actuator faults and model uncertainties of the quadrotor UAV,neural adaptive control schemes are constructed and incorporated into the baseline sliding mode control to deal with them.Moreover,in terms of unknown external disturbances,a disturbance observer is designed and synthesized with the control law to further improve the robustness of the proposed control strategy.Finally,a series of comparative simulation tests are conducted to validate the effectiveness of the proposed control strategy where a quadrotor UAV is subject to inertial moment variations and different level of actuator faults.The capabilities and advantages of the proposed control strategy are confirmed and verified by simulation results.展开更多
In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the ...In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and param...A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.展开更多
The Electro-Hydrostatic Actuator(EHA)is a typical hydro-mechatronic control system.Due to the limited accuracy of measurement,inadequate knowledge,and vague judgments,hybrid uncertainties,including aleatory and episte...The Electro-Hydrostatic Actuator(EHA)is a typical hydro-mechatronic control system.Due to the limited accuracy of measurement,inadequate knowledge,and vague judgments,hybrid uncertainties,including aleatory and epistemic uncertainties,inevitably exist in the performance assessment of EHA systems.Existing methods ignored the hybrid uncertainties which can hardly obtain a satisfactory result while wasting a lot of time on the experimental design.To overcome this drawback,a metamodeling method for hybrid uncertainty propagation of EHA systems is developed via an active learning Gaussian Process(GP)model.The proposed method is bifurcated into three pillars:(A)Initializing the GP model and generating the optimum candidate sampling set by an Optimized Max-Minimize Distance(OMMD)algorithm,which aims to maximize the minimum distance between the added samples and original samples,(B)maximizing the learning function and generating new samples by a developed farthest or nearest judgment strategy,while updating the original GP model,and(C)judging the convergence by three uncertainty metrics,i.e.,the area metric,maximum variance metric,and the mean value metric.A numerical example is exemplified to evaluate the effectiveness and efficiency of the proposed method.Meanwhile,the EHA system of aircrafts is examined to show the application of the proposed method for high-dimensional problems.The effects of the uncertainties in the Proportional-Integral-Differential(PID)of the EHA system are also examined.展开更多
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural respo...Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.展开更多
In this paper, a robust controller for electrically driven robotic systems is developed. The controller is designed in a backstepping manner. The main features of the controller are: 1) Control strategy is developed a...In this paper, a robust controller for electrically driven robotic systems is developed. The controller is designed in a backstepping manner. The main features of the controller are: 1) Control strategy is developed at the voltage level and can deal with both mechanical and electrical uncertainties. 2) The proposed control law removes the restriction of previous robust methods on the upper bound of system uncertainties. 3) It also benefits from global asymptotic stability in the Lyapunov sense. It is worth to mention that the proposed controller can be utilized for constrained and nonconstrained robotic systems. The effectiveness of the proposed controller is verified by simulations for a two link robot manipulator and a four-bar linkage. In addition to simulation results,experimental results on a two link serial manipulator are included to demonstrate the performance of the proposed controller in tracking a given trajectory.展开更多
基金partially supported by the National Natural Science Foundation of China under Grant Nos.62003266 and 61833013the Fundamental Research Funds for the Central Universities under Grant No.G2019KY05103the Natural Sciences and Engineering Research Council of Canada。
文摘In this paper,a composite adaptive fault-tolerant control strategy is proposed for a quadrotor unmanned aerial vehicle(UAV)to simultaneously compensate actuator faults,model uncertainties and external disturbances.By assuming knowledge of the bounds on external disturbances,a baseline sliding mode control is first designed to achieve the desired system tracking performance and retain insensitive to disturbances.Then,regarding actuator faults and model uncertainties of the quadrotor UAV,neural adaptive control schemes are constructed and incorporated into the baseline sliding mode control to deal with them.Moreover,in terms of unknown external disturbances,a disturbance observer is designed and synthesized with the control law to further improve the robustness of the proposed control strategy.Finally,a series of comparative simulation tests are conducted to validate the effectiveness of the proposed control strategy where a quadrotor UAV is subject to inertial moment variations and different level of actuator faults.The capabilities and advantages of the proposed control strategy are confirmed and verified by simulation results.
基金supported by the Innovation Fund of Key Laboratory of High-Altitude Simulating Technology,AECC Sichuan Turbine Research Institute(18zd9101).
文摘In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2012AA041801)supproted by the High-tech Research and Development Program of China
文摘A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.
基金the National Natural Science Foundation of China(Nos.72301057,72271044,72331002,and 52305010)the Sichuan Science and Technology Program,China(No.2023YFG0157).
文摘The Electro-Hydrostatic Actuator(EHA)is a typical hydro-mechatronic control system.Due to the limited accuracy of measurement,inadequate knowledge,and vague judgments,hybrid uncertainties,including aleatory and epistemic uncertainties,inevitably exist in the performance assessment of EHA systems.Existing methods ignored the hybrid uncertainties which can hardly obtain a satisfactory result while wasting a lot of time on the experimental design.To overcome this drawback,a metamodeling method for hybrid uncertainty propagation of EHA systems is developed via an active learning Gaussian Process(GP)model.The proposed method is bifurcated into three pillars:(A)Initializing the GP model and generating the optimum candidate sampling set by an Optimized Max-Minimize Distance(OMMD)algorithm,which aims to maximize the minimum distance between the added samples and original samples,(B)maximizing the learning function and generating new samples by a developed farthest or nearest judgment strategy,while updating the original GP model,and(C)judging the convergence by three uncertainty metrics,i.e.,the area metric,maximum variance metric,and the mean value metric.A numerical example is exemplified to evaluate the effectiveness and efficiency of the proposed method.Meanwhile,the EHA system of aircrafts is examined to show the application of the proposed method for high-dimensional problems.The effects of the uncertainties in the Proportional-Integral-Differential(PID)of the EHA system are also examined.
基金National Science Foundation of China under grant No.51378107Fundamental Research Funds for the Central Universities and Doctoral Research Fund by Southeast University under Grant No.YBJJ-1442
文摘Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.
文摘In this paper, a robust controller for electrically driven robotic systems is developed. The controller is designed in a backstepping manner. The main features of the controller are: 1) Control strategy is developed at the voltage level and can deal with both mechanical and electrical uncertainties. 2) The proposed control law removes the restriction of previous robust methods on the upper bound of system uncertainties. 3) It also benefits from global asymptotic stability in the Lyapunov sense. It is worth to mention that the proposed controller can be utilized for constrained and nonconstrained robotic systems. The effectiveness of the proposed controller is verified by simulations for a two link robot manipulator and a four-bar linkage. In addition to simulation results,experimental results on a two link serial manipulator are included to demonstrate the performance of the proposed controller in tracking a given trajectory.