The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have b...The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have been separated from each other by active tectonic zones. Boundaries between blocks are the highest gradient of differential movement. Most of tectonic activity occurs on boundaries of the blocks. Earthquakes are results of abrupt releases of accumulated strain energy that reaches the threshold of strength of the earth's crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude greater than 8 and 80%-90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes.展开更多
Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into ...Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu'er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (II1) and the middle Yunnan sub-block (II2), while the Baoshan- Pu'er block (III) can be further divided into three sub-blocks: Baoshan sub-block (III1), Jinggu sub-block (III2), and Mengla sub-block (III3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, rotating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (II1), and middle Yunnan sub-block (II2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4(/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu'er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or 展开更多
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet...Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active 展开更多
During the last 20 years, studies on active tectonics in China have entered a new quan-titative research stage and made a great progress. Summing up the quantitative results, a Map of Active Tectonics of China on the ...During the last 20 years, studies on active tectonics in China have entered a new quan-titative research stage and made a great progress. Summing up the quantitative results, a Map of Active Tectonics of China on the scale of 1︰4 million has been compiled. In the map all types of active tectonics and their kinematic parameters are reflected in possible detail, such as active faults, active folds, active basins, active blocks, volcanoes, and earthquakes. This paper summa-rizes the basic characteristics of active tectonics of China. The Himalaya Mountains and Taiwan Island are major plate boundaries where the slip rates are larger than 15 mm/a. Tectonic activity in the continental intraplate region is characterized by block motion. The crust and lithosphere in the region were dissected into blocks with different orders. Of them the Qinghai-Xizang (Tibet), Xin- jiang, and North China block regions exhibit the most recent tectonic activity. The kinematic char-acteristics of more than 200 active tectonic zones indicate that the intraplate tectonic activity represents a block motion at a limited low rate. Horizontal slip rate along the tectonic boundary belts between the blocks is generally less than 10 mm/a, and 10—15 mm/a in maximum, and hence it does not support the continental escape theory of high rate of slip.展开更多
Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the u...Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.展开更多
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velo...The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activ展开更多
文摘The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have been separated from each other by active tectonic zones. Boundaries between blocks are the highest gradient of differential movement. Most of tectonic activity occurs on boundaries of the blocks. Earthquakes are results of abrupt releases of accumulated strain energy that reaches the threshold of strength of the earth's crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude greater than 8 and 80%-90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes.
文摘Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu'er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (II1) and the middle Yunnan sub-block (II2), while the Baoshan- Pu'er block (III) can be further divided into three sub-blocks: Baoshan sub-block (III1), Jinggu sub-block (III2), and Mengla sub-block (III3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, rotating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (II1), and middle Yunnan sub-block (II2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4(/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu'er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or
基金the National Basic Research Program of China (Grant No. 2004CB418401)the National Natural Science Foundation of China (Grant No. 40474037)
文摘Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active
基金The research was supported by National Key Basic Research Program(Grant No.1998040701)Key Research Project of the 9th Five-Year Plan of China Seismological Bureau(Grant No.95040701).
文摘During the last 20 years, studies on active tectonics in China have entered a new quan-titative research stage and made a great progress. Summing up the quantitative results, a Map of Active Tectonics of China on the scale of 1︰4 million has been compiled. In the map all types of active tectonics and their kinematic parameters are reflected in possible detail, such as active faults, active folds, active basins, active blocks, volcanoes, and earthquakes. This paper summa-rizes the basic characteristics of active tectonics of China. The Himalaya Mountains and Taiwan Island are major plate boundaries where the slip rates are larger than 15 mm/a. Tectonic activity in the continental intraplate region is characterized by block motion. The crust and lithosphere in the region were dissected into blocks with different orders. Of them the Qinghai-Xizang (Tibet), Xin- jiang, and North China block regions exhibit the most recent tectonic activity. The kinematic char-acteristics of more than 200 active tectonic zones indicate that the intraplate tectonic activity represents a block motion at a limited low rate. Horizontal slip rate along the tectonic boundary belts between the blocks is generally less than 10 mm/a, and 10—15 mm/a in maximum, and hence it does not support the continental escape theory of high rate of slip.
基金This work was supported by the National Key Basic Research Project (Grant No. G1998040701) and the National Natural Science Foundation of China (Grant No. 49825104).
文摘Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.
基金This work was supported by the State Key Basic Research Development and Program Project and National Natural Science Foundation of China (Grant No. 40174029).
文摘The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activ